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Abstract: We are investigating the cligue-rank (linear rank of the cu-cliques) of graphs and its relation
to the optimal colorations of perfect graphs.

First, we observe a simple characterization of perfectness with an inequality about the clique rank.
Then we notice that the extremal graphs with respect to this inequality are exactly the uniquely
colorable perfect graphs (perfect graphs that have exactly one optimal coloration), and that a good
characterization for the unique colprability can also be derived with the help of the clique-rank.

After this, we would like o understand the significance and the use of uniquely colorabie perfect
graphs (perfect graphs that have exactly one optimal coloration) for the perfect graph conjecture. In lack
of a general combinatorial good characterization of unique colorability we state a conjecture for such a
characterization, study its connection with other conjectures and theorems (including the Perfect Graph
Conjecture). The validity of our conjecture, even for special cases, would imply new classes of perfect
graphs. After settling it for w=3, we deduce the Perfect Graph Conjecture for diamond-free graphs, a
result of Partasarathy, Ravindra and Tucker. This study relies again on the clique rank.

Finally, we show how a simply stated combinatorial algorithm for coloring perfect graphs can be
designed with the help of the clique rank, an algerithm that unfortunately depends exponentially on .
However, this algorithm is efficient for some classes periect graphs, including "K4-e"-free perfect
graphs treated earlier by Tucker. lts performance in general is O(n®+1), which, if 0 is small, is better

than the eilipsoid methed, and than other algorithms we know . -

1. Introduction

Let G = (V(G), E(G)) be a graph. A clique of G is a subset of pairwise adjacent
venices. Let w(G) be the maximum cardinality of a clique. A k-coloration of Gis a
partition of V(G) into k stable sets. The chromatic number X{(G) is the minimum
number of stable sets partitioning V(G). A graph is calied perfect if W(GY=X{(G") for
every induced subgraph G'. G will be calied uniquely colorable, if it has exactly ore
w(G)-coloration. - - |

* This is a preliminary,draft version, prepared for the volume of the IPCO conference, May 1990




A chordless cycle is a cycle which is an induced subgraph. Berge's Perfect
Graph Conjecture (PGC) states that a graph is perfect if and only if it does not
contain an odd chordless cycle or the complement of an odd chordless cycle as an
induced subgraph .

Let A(G) be the incidence matrix of the cliques of G and B(G) be the incidence
matrix of the w (G)-cliques of G. { B(G) is a submatrix of A(G) ).The linear rank of the
incidence (characteristic) vectors of the W (G)-cliques of G will be called the clique
rank of G, and will be denoted by r(G).Note that r(G) = r(B{(G)).Sets and their
incidence vectors will often not be distinguished. A maximum  set of linearly
independent w (G)-cliques (that is a set that generates linearly all w (G)-cliques)
will be called a clique-base; if w(G) =3, then it will be called a triangle-base; their
span, that is the span of all w (G)-cliques will be called the chque-space (for W (G)
=3 tnangle space ). - :

Let us recall a basic result about perfect graphs :

(1.1) The following statements are equivalent : -

(i} Agraphisperfect. - ' '

(ii) The stable set polytope P(G)={x : x 20; A(G) x< 1} is mtegral that is the set of its
extreme points is the set of incidence vectors of the independent sets of G.

(i) (i) or (i) hold for the complement of G. - ' ' '

The equivalence of (i) and (ii) is an immediate consequence of Lovasz's main
"blowing Lemma" in the proof of the Perfect Graph Theorem, a remark implicit in
Lovasz (1972}, explicit in Chvatal (1975) and conjectured by Fulkerson (1970). The
equivalence of (iii) with the rest is just the Perfect Graph Theorem (Lovasz 1972).
(1.1) will be extensively used in the sequel.

Many results related to perfect graphs are based on this polyhedral
characterization. Padberg's results (1974) on critically imperfect graphs are among
them. We just mention two of the propemes he proved, for later convenience:

{(1.2) IfG is acnt:clally lmperfect graph then
a. r(G)=n ‘
b. G(V(G){v}) is uniquely colorable for every ve V(G).




(An imperfect graph is critically imperfect if any proper induced subgraph is
perfect.) Another interesting result, that follows from Fulkerson (1971) is that there
exists a polynomial algorithm for finding a minimum coloring of G provided that
w (G) is fixed. Again, this algorithm uses some powerful tools of linear algebra.
Note however that the method proposed by Fulkerson is not combinatorial.

Similar remarks could be said about Grétschel Lovasz and Schrijver's algorithm
for coloring perfect graphs, the only known polynomial algorithm for this problem.

On the other hand many questions related to perfect graphs can be solved
‘using purely combinatorial arguments; Berge's conjecture itself has a purely
combinatorial flavor. ' ' ' |

Our goal in this paper is to connect these two possible approaches; more
specifically, we use linear algebra in order to get combinatorial methods and
structures for the coloring problem of perfect graphs. In particular, we are interested
in uniquely colorable perfect graphs which piay a crucial role in perfect graph
theory by the above mentioned result of Padberg. We shall see that from the point of
view of linear algebra they are the "most saturated” perfeCt- graphs.

In Section 2 we prove some general results based on the clique rank and the
clique space of a graph. In particular, we show how perfectness can be
characterized with the help of the clique rank. From the observation that uniquely
colorable perfect graphs are those with maximum clique rank, we deduce a good
characterization of unique colorability for perfect graphs.

In Section 3 we state a conjecture about a stronger, combinatorial characteriza-
tion of unique colorability, and its relation to other conjectures and results. We
would also like to explain why the special cases with fixed w are interesting.

In Section 4 we prove the main conjecture for w =3, applying some algebraic
considerations. This is a common generalization of the perfect graph conjecture for
diamond-free and 3-chromatic perfect graphs, known earlier from the work of
Parthasarathy and Ravindra (1979), and Tucker (1984), (1987a,b).

In the last Section 5 we show how the relation of the: clique rank and
colorations can be used for coloring algorithms. ' '

2. The clique rank and the clique space

In this section we wish to make clear some simple connections between the
clique rank and the colorations of perfect graphs. '




Let us first define an upper bound for the clique rank of a perfect graph. We
shall see that this bound is tight (equality is satisfied) exactly for uniquely colorable
graphs (Theorem 2.3 below).

Proposition 2.1 If G is perfect, then r(H)<n-w (H)+1 for every induced subgraph
H of G. : )

Proof: Let H be an induced subgraph of G. Since H is perfect there are w (H) stable
sets which partition V(H). These o (H) vectors are clearly linearly independent, and
are solutions of the linear system B(H)x=1. Thus r(H)<n-w (H)+1. :

The following corollary will be important from an algorithmic point of view:

Corollary 2.2 : Let G be a perfect graph whose edge-set is non-empty.

a.) It X is a set of linearly independent w (G) -cliques, then there exists veV(G) such
that v is contained in at most w (G)-1 elements of K.

b.} There exists ve V(G) such that r{G) < r(G-v)+w{G)-1

Proof a)Let K (v): {KGZK veK}. If each vertex were contamed in at least w(G)
elements of K, then we would have w (G)[X |=Z{|X (v)| : veV(G)}2 w (G) [V(G)],
whence [K [2|V(G)|. On the other hand |K |<|V(H)|-wo (H)+1, and since w (H)22, this
is a contradiction. R S

b.) Take the vertex v glven by a). r(G v) = r(G) |‘J{ (V)] 2 r{G) - (0 (G) - 1), as we
claimed g e e

- The following theorem summarizes the main remarks we made so far. It will be
used to prove non-perfectness if the coloring algorithms fail.

Theorem 2.3: The fol!owmg statements about the graph G are equrvalent

(i) Gisperfect. a IS e
(i) For every induced subgraph H of G: r(H) <n-1 prov:ded H contains an edge
(i) For every induced subgraph H of G: r{H) < n-wo(H)+1.

Proot: "(i)= (iii)" is just Proposition 2.1 .
If H contains an edge, then w({H)>2, whence "(iii)= (ii)" is obvious.
"(ii}=>(i)" is just (1.2) a., and the Theorem is proved.




Note that the bounds in (i) and (i} are equal if and only if ©w=2, and the gap for
w>2 is quite mysterious. {Has this particular role of w=2 something to do with the
same role of this case in the perfect graph conjecture ?)

Theorem 2.4: Let G be a perfect graph. G is uniquely colorable if and only if
Q) = n-(G)+1.

Proof: Let P(G)= {x=0 : A(G)x<1} be the stable set polytope of G}.

For basic knowledge about polyhedra we refere to Schrijver (1986). Recall however

that a d -dimensional face of a full dimensional polyhedron is the intersec-tion of n-
d facets having a set of linearly independent coefficient vectors.

P(G) is obviously full dimensional. L et F be the face F={xeP(G) : B(G)x=1} of
P{G). The extreme points of F are exactly the stable sets which intersect every
w {G)-clique. In other words a stable set S belongs to F if and only if it occurs as a
color class in some w(G)-coloration. If S has this property it will be called a color-
class. Since - F is the intersection of the facets defined by the rows of B(G),
dim({F)+ r(G)=n. (Recall that r(G)=r(B(G)). } '

G is uniquely colorable if and only if the number of color classes is w (G), which
is true if and only if dim(F)}=to (G})-1. (A color class different from the classes of a
given coloration, is also linearly independent of them.) . Thus the theorem is
proved.

This is obviously- a good characterization of unique colorability:
an w(G)- coloration, and a set of n-w (G)+1 linearly independent w (G)-cliques of
a graph on n vertices proves that the graph is uniquely w(G)-colorable. This good
characterization can be presented in the following combinatorial way:

Suppose w (G)=23. (The case w (G)<2 is trivial.) a,beV(G) will be said to be
equivalent, in notation a~b if there exist multisets (a multiset is a set whose.
elements have non-negative integer multiplicities showing the number of times -
they are contained in the multiset) KX 4 and X » of w (G)-cliques such that
K 1(x) = K o(x) holds if and only if x ¢ {a,b}, where XK;(x) = | {KeXK;: xeK} |.

The following theorem is a combinatorial version of theorem 2.4, and we also
included a characterization for a and b to have the same color in every coloration,
even if G is not uniquely colorable: = s o '




Theorem 2.5: Let G be a perfect graph with w (G)=3.
- The above defined relation is an equivalence relation;
- a#beV(G) have the same color in all the w-colorations of G if and only if they
are equivalent.;
-G is uniquely colorable if and only if this equivalence relation has w (G)
classes.

Proof: One can remain within the framework of "combinatorial " arguments for the
trivial parts. By simple counting arguments one can prove the following about

a, beV(G), a~b and about the families of cliques in the definition of the
equivalence:

1. [Xql=1%K,]. - -

2. il£1(a)~tl{2(a) - (K 4(b) - (Ko(b)) (seethe notat:ons of Corollary22)

3. "~"isan equwaience relation.

Let us now check the trivial if parts of the statements in a combinatorial way. Let

a~b, and let K; (i=1,2) be the w (G)-cliques which prove this equivalence. Let

S1,..., 8¢y be a coloration, and suppose indirectly a€Sq, be Sy. |3{-|=Z‘J£i(x),

X€S1

Since K 1(x) = K (x) if x=a, but K (a) = K »(a), we can conclude | X, |¢|1K2|

Let now So be a color class of the above coloration which contains neither a nor

b. (There exists such a color class since W (G) =2 3.) We have now, like above,

[K;1=>"K(x), which implies now |X |_[§I{2] a contradiction. Thus a and b
x€So .

have the same color in every coloration; and the if part of both statements follows

immediately. . :

To prove the essential only if part we shall. use some linear algebra in a similar.
way as in the proof of Theorem 2.4. Suppose a, b € V{G) have the same color.in
every w{G)-coloration of G, and define the vector w with w(a)=1, w(b)= -1.and
w(v)=0 if az#vsb € V(G). By the assumption on a and b, ws=0 holds for the

characteristic vector s of every color class. ( A color class contains neither a nor
b orboth a and b.) Since G is perfect the color classes generates the set of all
the solutions of the system B(G)x=1. Thus wx=0 is satisfied for every solution of the

system B(G)x=1, and consequently w belongs tc the linear space generated by
the rows of B(G): w= Z)in . Let d be their smallest common denominator of the




Aj. The families {K;: Aj>0} and {K;: <0} where the multiplicity of clique K; is
ldx;| prove a~b, and the proof is finished.

Note however, that despite the tanslation into a combinatorial language, the
above solution is actually algebraic. Unfortunately it does not say enough about the
structure of uniquely colorable perfect graphs (see Section 3).

For w3 =3 we shall present in Section 4 a "more purely” combmatonal
characterization. '

3. Some conjectures

One of the most promising trials to approach the perfect graph conjecture has been
Tucker's analysis of uniquely colorable perfect graphs, and their relation to the the
perfect graph conjecture. - Let us summarize Tucker's approach:

A.) Look for a good characterization of the unique colorability of perfect graphs: in a
uniquely colorable perfect graph a combinatorial “forcing procedure” of the unique

w (G)-coloration should be constructed. (Theorem 2.5 g[ves already some forcmg
procedure based on linear algebra.)

B.) Suppose that a forcing procedure is applied to the (not necessarily perféct)
graph G, and that a certain vertex is forced to have an w (G)+1-th color. Proving
that in this case either an w (G)+1-clique or an odd chordless cycle or the
complement of an odd chordless cyclecan be found, is equivalent to the PGC, as it
is explained below. (it is obviously implied by the PGC.)

Let us explain how an appropriate answer to A.) and B.) would imply the Perfect
Graph Conjecture. Let G be critically imperfect. By (1.2) G-v is uniquely
w (G)colorable: apply now A.) for coloring G-v. Clearly, v must be colored with an

w (G)+1-th color. Now we can apply B.) to find a hole or an ant:hole and the Perfect
Graph Conjecture is "proved".

Some results have been reached earlier in the direction of B.). Chvatal's resuit
(1984) can be interpreted as showing the existence of a hole or antihole under a
strengthening of the unique colorability condition. See also Tucker {1983) for some
generalizations. On the other hand there has not been anythlng done about A)
besides some conjectures of Tucker. - ' -




Let us state a conjecture for a combinatorial forcing of unique colorability:

Letvand w be two non-adjacent vertices of a graph G. We say that vand w
are forced vertices if there exist two w (G)-cliques Ky and K such that {v}= Ky \Ky
and {w}= Ko \Ky.

Obviously, if G is perfect, in any optimal coloration the same color is assigned to v
and w.

Starting from a graph G let H be the graph obtained by repeated identification
of forced vertices. (Note that this operatlon does not necessarily preserve
perfectness.) '

Conjecture 1. A perfect graph is umquely colorable if and only if H is a clique of
size w(G)

The sufficiency of this condmon is obwous In the following section we prove it for
Ky4-free graphs, a case whose significance is explained by Theorem 3.2 below. The
validity of this Conjecture would be especially interesting for classes of graphs for
which the Perfect Graph Conjecture is not proved yet. : ‘

Recently, Markossian and Gasparian (1988) proved a theorem in the direction
of B.).using a similarly locking forcing procedure to the above defined. However.
their forcing procedure is somewhat more particular. A proofof the Perfect Graph -
Conjecture using the above conjecture would in particular include their result and
the main result of Tucker (1983). Such a proof may turn out to be less difficuit than
the conjecture itself. L -

Tucker (1983) had already a (more complicated) conjecture on .unique
col_orab_i!ity. We state without proof the equi_valence of t,he two conjectures:

Theorem 3.1: The above conjecture is vahd it and on!y it Tucker's conjecture is
valid.. o ‘ : o

In fact we cannot even prove the existenc_e of one forcing step:

Conjecture 2: If G is a uniquely co!orable perfect graph, then it contains two
w (G)-cliques whose intersection is an  (G)-1-clique.




Finally let us mention 2 more modest goal than the PGC which also makes use
of unique colorability:

Theorem 3.2 If § is a class of graphs closed under taking induced subgraphs,
and for some integer k every perfect graph in € with W=k has at least two
colorations and every graph in § with w<k s perfect, then every graph in '§ is
perfect.

This statement is a simple consequence of the above mentioned result of Padberg:

Proof of Theorem 3.2: Suppose for § and k the conditions of the theorem are
satisfied, but the statement is not true: let Ge'§ be not perfect and [V(G)} minimum
among such graphs. Since § is closed under taking induced subgraphs, G contains
a critically imperfect induced subgraph which is in '§ , and thus G itself is such a
graph. '

By our assumption on §, w (G)=k. Take an arbitrary veV(G). Since G is critically
imperfect, w (G-v)=w (G)2k. Clearly, G-v is perfect, and by Padberg's result it is UC,
whence the union of k color classes of its unigue w-coloration induces a graph H
which is also UC. H is perfect, H belongs to §, w (H)=k, and thus, by the
assumption, it has two colorations, a contradiction. .

Note that k plays a role only in the condition of Theorem 3.2 , and it is not
necessatrily present in the definition of the class '§ Thus, information about uniquely
k-colorable perfect graphs can lead to new classes of perfect graphs. This gives
some motivation to look at the case k=3 in more details. -

4. The case w=3

The idea of Theorem 3.2 has already been exploited for k=2: clearly, a bipartite
graph is UC if and only if it is connected. The proof of Giles, Trotter and Tucker
(1984) of the PGC for K¢ 3-free graphs repeatedly uses this fact.

For k=3 the following proof of the PGC for diamond-free graphs gives an
example to the use of this idea. A diamondis a graph isomorphic to Ks\e. Diamond-
free graphs are graphs which do not contain a diamond as an induced subgraph.
The following result can be checked through the decomposition procedure for
diamond-free perfect graphs of Fonlupt and Zemirline (1988)." '




Theorem 4.1: A diamond-free non-bipartite perfect graph has at least two
colorations. |

This is Conjecture 2 for w=3. Theorem 3.2 and Theorem 4.1 immediately imply
the Perfect Graph Conjecture for diamond-free graphs, a result of Parthasarathy
and Ravindra (1979). The results of this section led us to a proof of Conjecture 1 as
well, for w=3. o o - S

Despite the combinatorial nature of the results in this section, their proofs are
based on an algebraic observation. In order to state this let us introduce some
notations. | | |

ro will'denote the rank function over GF(2), and ro(G) will denote the rank over
GF(2) of the set of characteristic vectors of all w (G)-cliques of a graph. Note that the
incidence vectors of a family of subsets of V(G) are linearly independent over GF(2)
if and only if for all subfamilies (including the original family) there exists veV(G)
which is contained in an odd number of sets belonging to the subfamily. '

The essential part of Theorem 4.2 below is that there exists a basis for the
triangle space over GF(2), which is also a basis over the rational numbers:

Theorem 4.2 : letGbea 3-colorable perfect graph.
a.) r{G) =r(G).
b.) If the integer vector z isin the triangle space and t is the 0-1vector such that
t=z (mod 2), then t is in the triangle space over GF(2) as well.

Proof: Note first that ry(€) < r(€) is obvious. To prove the equality, let k:==n-ry(T).
It is well known from linear algebra that there are k vectors t1,... tk €{0,1}" linearly
independent over GF(2), each of which is orthogonal to €, that is: t{T)=0 mod 2. for
i=1,...k and for every Te €. We shall construct linearly independent vectors
21,...zk eZnsuch that zi(T)=0 (for i=1,...k and for all TeT). This will prove the
statement, because then r(T)sn-k=r,(€). : '

It TS V(G) is a triangle of G, then it is a linear combination of elements of €,
whence ti(T)=0 mod 2 (i=1,...k). This means that the set Xi={ve V(G): ti(v)=1}




intersects every clique in an even number of elements. in particular, it does not
contain any triangle: in other words 0 (G;)<2 for the graph G; induced by X;. Since G
is perfect, G; is bipartite. Denote the classes of a bicoloration of G; by A;and B;. Let
Zi(v):=1 if ve A; and -1 if ve B; . We know that every clique intersects AjUB; in an even

number of elements, so it is either disjoint from AjUB;, or intersects both A; and B;
(because both A; and B; are stable sets). Consequently zi(T)=0 (i=1,...k and V T€T).
z1,... ZK are linearly independent, because zi=ti mod 2, and t1,... tk are independent

even over GF(2); Thus a.) is proved.

b.) is an easy consequence of a.): Let € be a triangle basis over GF(2) and z be
an integer vector in the triangle space. Let t be the 0-1vector such that t=z (mod
2). Since T is also a triangle basis over the rationals, €U{z} is dependent, whence
T U{t} is trivially dependent over GF(2). Since T is independent over GF(2), t must
have nonzero coefficient in the linear dependence of € U{t} over GF(2), and the
theorem is proved. '

Note that we do not know about similar results for perfect graphs with arbitrary
chromatic number. '

By this theorem, we can restrict ourselves to (mod 2) linear relations for
3-colorable perfect graphs to get more combinatorial type theorems . Let us state
for example the following more combinatorial version of Theorem 2.5 for this case:

Let G be a perfect graph with w (G)=3, and a,b € V(G). A set K of triangles such
that a and b are contained in an odd number of triangles of X, and all other
vertices are contained in an even number of triangles of X, will be called an (a,b)
path of triangles. Let us define the relation a~b : a~b if and only if there exists an
(a,b) path of triangles. If a~b let us say that a and b are equivalent.

Theorem 4.3: Let G be a perfect graph, w({G)=3. The above defined relation is an
equivalence relation; a=beV(G) have the same color in all the 3-colorations of G if

and only if they are equivalent; G is uniquely colorable if and only if this
equivalence relation has 3 classes. '

Proof : The proof is similar to the proof of Theorem 2.5, in fact simpler. Let us just
sketch it. First we prove that the defined relation is an equivalence relation: '




Let a~b, and suppose a~b and b~c. Let X be an (a,b)-path of triangles and £ a
(b,c)-path of triangles. Clearly, X AL is an (a, c) path of triangles, which proves
transitivity.

The "trivial" if parts of the statements are even shorter here: Let a~b, and let X
be the 3-cliques which prove this equivalence. Let Sy, Sp, Sz be a coloration,
and ' '

suppose indirectly a€Sy, beSp. We obviously have [K|=S{X(x): xeS; }
(i=1,2,3). Fori=1,2 this sum is odd, because all terms of it but one (K (a) and K (b)
respectively) are even; on the other hand for i=3 the sum is even, because al[ terms
of it are even, a contradiction. ' '

The essential only if part can be proved similarly to the corresponding part of
Theorem 2.5, arguing over GF(2) instead of the ratlonal numbers..

Actually the following strengthening of Theorem 4.3 can be proved:
THEOREM 4.4 : Conjecture 1 is valid for w=3.

Here, we omit the proof which is difficult and will be published in a forthcoming
paper. Note only, that one of the main difficulty is that contractlon by forcing rule
does not preserve perfectness. - ! : R

We saw that Theorem 4.1, which is an easy consequence of Theorem 4.4
immediatly implies the Perfect Graph Conjecture for diamond-free graphs. Another
consequence of Theorem 4.4: Tucker's (1984) result about the perfect graph"
conjecture for K4-free graphs. {See also Tucker (1987a b) )

We think that Theorem 4.4 might- have further corollaries, that should be
- exploited in the futur.

5. Coloring algorithms - :
In this section we shall deduce some algorithmic consequences of the results
developed in the previous sections. The general coloration algorithm we suggest
below has O(n®+1) running time, which might be interesting if w is small.

Unfortunately we are unable to find a polynomial time combmatonal algorithm for'
arbitrary perfect graphs, even if the clique basis is given.

12




Recall that it is also possible to use Gaussian elimination in order to get a
polynomial algorithm for minimum coloring, if the chromatic number is fixed, see
Fulkerson(1971). However, the complexity of such an algorithm is much bigger.

~ The initial idea of the coloring algorithm presented below is the following
statement:

Theorem 5.1: Let G be a perfect graph with W =W (G). There exists an ordering of
the vertices of G: x4, ..., Xp, such that {Xn .co41: Xn-eos -+ X} IS @n w-clique, and for
1<isn-w+1 : 0<r(G) - r(Gi,4) € w-1, where G; is the graph induced by | "
{Xi Xists -5 X, (i=1,...,n-00). :

Proof: We proceed by induction on n. If G contains only one w -clique, the
proposi- tion is clear. Otherwise the statement we have to prove is clearly the
following: there exists x4€V{(G) such that 0 < r(G) - r(G X1) € wW-1. But thls is just

Corollary 2.2 b.} .

let us call a clique-base Bnormal with the order x4, ..., X, of the vertices, if:

a.) {Xn-w+1) Xn-eo42 - xn} €B '

b.) for 1<ign-wo+1: di= r(G) - r(Gj,1) < W-1, where d; is the number of cliques
BeRB, B {x;, ..., xplcontaining x; {i=1,...,n-w). -
(Equivalently: SB,--{Be:B. BS {x ..., xn}} is a triangle basis of G;).

Theorem 5.2: There exists a normal clique basis.

Proof: Take an order ensured by Theorem 5.1, and define B recurs:vely

Bwst’ '"{ {Xn -co+1» Xn-wo+ -+ Xn} } _ _

8 :=clique basis of the graph induced by {x;, x;,1, ..., X5} containing

Ri1 (i=n-0,...,1) | | |

(Clearly, the clique basis B;,4 of G;.4 can be completed to a clique basis B;of G;.)
if Be B;\ B, 4, then x;€B, because if not, then BC {X;,1. Xj,2, ..., Xp}, in contradiction
with the maximality of B;,4. Thus di=|':B i\ Biql=r(G) - 1(G;;4). Q.E.D. '

For w=3: There exists a triangle basis B such that {x;.0, Xp.1, Xp}€ B, and
{Xj, Xjs1, .- Xp} contains 0, 1 or 2 more elements of B than {x;,1, Xjz2, -.., Xp}
depending on whether r{G;) - r{G;,4) is 0, 1 or 2; these new elements contain x;.

13




We shall now see a new relation between linear algebra and colorations, a
relation that can be used algorithmically. Here we shall restrict ourselves {o the
case w=3 in order to show the ideas on a simple special case.

Theorem 5.3: Let G be perfect and ©0=3. Let B be a normal triangle basis with
the order {x4,..., X5}, and use the notation above. Suppose that the graph G; 4 has
already been colored, and denote by Hy , the graph induced by the vertices of color
xand vy. ' :
a)lf r(Gy) - r{Gi,1)=0, then for arbitrary two colors a and b, in every component of
Ha b, &li the neighbors of x; have the same color. , -
b.)i r(G;) - r(Gj,1)=1, then for all triangles T of G; containing x;, T\x; is colored with
the same two colors, say a and b. Moreover in every component of Hy , and Hg 5 aII
the neighbors of x; have the same color. :

c)f KG)) - r(Gj,1)=2, then there exists a color ¢, such that all triangles of G;
containing x; have a vertex of color ¢. Moreover, in every component of Ha b »all
the neighbors of x; have the same color.

Proof: First note the following: . :
(*) Suppose that x; has two neighbors y and z of different colors in the same

component of a graph H induced by their two colors, and let P be a minimal path in
H with end-nodes y and z. Then there exists a triangle consisting of x; and two

neighboring vertices of P. :
(Indeed, PUx; induces an odd cycle and_ cannot be bipartite since G is perfect.)

Now, if a.) were not true, then by (*) we would have a tnangle through x,, a

contradiction. : -
To prove b.), suppose that there exist trlangles T, T2 of Gi, where T, \_xiis ‘

colored with colors "a" and "b", and T, \x; is colored with coIors "b" and "c". We show .
that 84U {T,, T} is linearly independent, in contradiction with
r(Gy) - f{Gi;1)=1. (Recall thatBy={BeR: BC{x;, ..., Xp}}for j=1,...,n.) ..

B 1Y { T, } is linearly independent because of xie T.. Define now v(x):=1if x
has color "a".or"b", and v(x):=0 for all other vertices of V(G). Clearly, v(T} is even for
all triangles in Bj,1U {T }, and v(T )=-is odd, proving the linear independence of T,
of all the other triangles of R;,;U (T} over GF(2) as well. This contradiction proves
that all triangles of G; containing x; are colored with the same two colors, a and b
say. | ' -
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The second sentence of b.) follows now immediately from (*): if this second
sentence were not true, by (*) there would exist a triangle of G; containing x; and
having a vertex of color ¢, in contradiction with the already proven first sentence.
Thus b.) is proved.

Let us prove ¢.) now. Again, the second sentence follows from the first one:
using (*) the indirect assumption would imply the existence of a triangle T in G;
containing x;, where T\x; is colored with the colors "a" and "b". But this is in

contradiction with the first sentence.

To prove the first sentence, suppose indirectly that T b T, T, are triangles of
G; containing x;, whose two other vertices are colored with the colors shown in the
indices. According to the proof of b.), B;;1U {T,,, T, }is linearly independent over
GF(2).

Let v(x):==1if xis of color a or corif x=x;. Clearly, v(T)=0 mod 2 if Te B;,4,
and also if T= 'a':1 , Or T= Tb . On the other hand, v(';':T c) =1 mod 2. Hence T does
not depend linearly from ®;,U (T T, over GF(2). Equivalently,

B U{T b’ Tb’c, Ta‘c }is linearly independent, in'. contradiction with r(G;) - r(Gi,1)=2.

Note how this Theorem implies an algorithm: in a.), by interchanging the two colors
in some components of the graphs induced by 2 color classes, all neighbors of Xi
will have the same color. in b.) and c.) similarly, after maybe interchanging colors in
some components of Hy , , x;j will have neighbors of two different colors only. The
precise details of the algorithm are omitted here.

Note also that in the proof of ¢.) theequivalenbe of the independence over the
rationals and over GF(2) played again an important role (Theorem 4.2). Since we
do not know this for w24, the algorithm for general w will be less efficient .
However, Theorem 5.3 can be straightforwardly generalized to arbitrary w and the
complexity of the corresponding algorithm is O(n®+1), '

Acknowledgment: We are indebted to Gabor Bacso, Miche!l Burlet, Myriam
Preissmann and Péter E. Soltész for the many very useful discussions on the topic
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