
ELSEVIER Discrete Applied Mathematics 91 (1999) 305-31 I

DISCRETE
APPLIED
MATHEMATICS

Note

Optimal binary trees with order constraints

Abstract

Given a sequence of numbers ul,. ,a,,, find a binary tree with q leaves minimizing max{/l,
+ (II,. , II,, + u, }, where h, is the distance from the ith leaf to the root, i = I, , q. This problem
is solved by means of a O(q) algorithm and a tight upper bound for the minimum is given by
an explicit formula. The task is equivalent to finding a binary tree of minimum height having y
subtrees of heights (II,. , uy whose leaves partition the leaves of the tree. This question stems
to be of general interest. In particular, it arises in the problem of the optimal decomposition of
a tree into chains (Waksman, Tech. Report FC’ 95-06. August 1995). 0 1999 Elsevier Science
B.V. All rights reserved.

&~~~I~YHY/.s: Binary tree; Optimal decomposition

1. Introduction

A hirzor~~ tree’ is a tree T = (V, E) with a root I. E V where. by orienting the edges

so that every node is reachable from r, the outdegree of every node is 2 or 0; so the

degree of the root is 2 (or 0 if E = fl) and all other nodes are of degree 1 or 3. Nodes

of T whose degree is 1 are called IPUW,Y. Usually, one of the two outgoing edges is

assigned to be the left and the second to be the right: leaving a node 11, they enter the

nodes called I(u) and Y(U). This introduces, in particular, a linear left to ri~qc//zt order

on the leaves. The heiyht h(c) of a node c is its distance (number of edges in the

path) from the root. The heiyht h(T) of a tree T is the maximum height of its leaves.

A tree is c~~plc~r if all its leaves have the same height. Clearly. a complete binary

tree of height k has 2” leaves.

* Corresponding author. E-mail: andras.sebo@imag.fr.

’ My friend and coauthor Zeev (BOBA) Waksman died in November 1997. Our article also rcmlnds mu

of his libely personality and the pleasant time I had the opportunity of spending with him.

Ol6h-?lXX/996 see front matter 0 1999 Elsevier Science t3.V. All rights rcser\cd

PII. sol66-2lXx(9x)ool38-3

306 A. Sebii, 2. Waksmanl Discrete Applied Mathematics 91 (1999) 305-311

The number of leaves in T will be denoted by jlrll. The quantity (clearly non-

negative)

(1)

is called the excess of the tree T. Leaves of a tree T are refered here as ~1,. . , vq, q :=

((TIJ, and their heights as hi: hi := h(vi). We treat the leaves in this list in the left to

right order.

We present here an algorithm solving the following problem: given a vector a :=

(al,..., a,), find a binary tree T with q leaves so that T(a) := max{hi Sal,. . . ,h,+a,}

is minimum. The components of a are also indexed from left to right. If renumbering

of the components is forbidden - which can be called the order constraint - this min-

imum will be denoted by f(a). If renumbering is allowed (that is each one of all q

permutations of the numbers al,. . . , uq - with corresponding renumbering - is permis-

sible), we denote it by y(a). We will refer to these two versions of the problem as

“f-version” and “g-version”. The computation of s(a) will be straightforward, whereas

the computation and estimation of f(a) is the main result of this note.

The following problem has been investigated in a series of papers. Given M functions

J;(t), i = 1,2,. . . , m, t E N := (0, 1,2, . .}, each fi being nondecreasing and “concave”,

that is the sequence of its increments is nonnegative and nonincreasing:

O<fi(t + 1) - J;:(t)<jj(s + 1) - J;:(s) if t>s, s,t E N,

maximize EYE, h(xi) under the constraint Cy=i xi dd. Supposing any value of any

function fi is to be accessible for a constant amount of time (direct access), we have

the problem of “optimum distribution of effort”, (see [4]). The best known algorithm

for this problem is given in [2]. On the other hand, if each of the functions fi is

represented by its sequentially accessed sequence of the increments, that is the effort

of getting the value of J;(t) is proportional to t, we have the classical m-way merging

problem. The selection tree algorithm in [8] solves it with a O(m + d logm) effort (in

other words, with a logm per unit effort).

Starting from [9] and until recently [l], certain attention has been paid to the direct

access version where the single constraint above is replaced by a set of inequalities

CiEH 1’ x, < dH, VH E SF, where X 2 2{‘=“‘) is defined as follows: if HI, Hz E 2, then

HI n Hz is either empty or one of HI, HI. In many papers (notably in [l]), the name

nested (introduced in [9]) is used for such a family, while Hochbaum [5] uses a more

apt term tree family preserving the name nested only for the special case HI c Hz c

(called in [l l] the chain case).

The sequential access version of the problem under the tree constraints was con-

sidered in [5] and, later, in [ll]. Both have obtained (though by completely different

means) the asymptotically best (O(logm)-per-unit) effort estimate. In [5], an O(l)-

per-unit-in-average algorithm is proposed for the nested (chain) case, which exploits

heavily the results of [3], and an O(logm)-per-unit algorithm for the tree case, which is

based on [IO]. In [111, the nested problem is solved by a straightforward 0(1)-per-unit

A. Sehii, Z. Wuksmanl Discretc~ Applied Mathemcrtic,.r 91 (1999) 305-311 307

algorithm and the tree case is reduced to it through an optimal (in a sense) decom-

position of trees to chains. The motivation for the present work has been provided

by this optimal decomposition problem, which seems to be also of general interest.

In particular, Corollary 2.2 below is crucial for the log-per-unit estimate in the tree

problem.

2. Excess of a list of trees and its upper bound

Let binary trees 7;, . . . , q with roots rl,. . . ,Y(, be given. We associate with every

binary tree T with q leaves ~‘1,. . ., oq another tree, say T*, by hunginy I;,. . 7;/ on

its leaves meaning that we identify c, and ri for all i = I,. ,q. We want to find a

tree T minimizing h(T*). Clearly, nothing but the heights (at,. . . aq) =: a of the trees

T,. , q is important: it is clear that the minimum height of T* is ,f’(a) or </(a)

depending on the version we are considering. Since (/T* (/ is equal to (/T 11 + t . + 11 G/I

independently of the choice of the tree T, h(T*) - e.r(T*) is a constant, and h(T*)

and e.u(T*) are minimized for the same trees T*. We denote the minimum excess of

T” by ,fti.~(F,. , G) or ges(7;, . , q) depending on the version of the problem. So,

.fex(F,...,T,)=f(a)- rlog,(((7;/I +“‘+ llr,Il)l.

Clr-u(7;,...,~)=y(a)- rlog,((l7i/l +“‘+ IlT,lI,l.
(2)

The trees providing minimum to the functions ,f’ and&x (9 and c/ex) are referred here

to as optimul or f-optimal (y-optimul, respectively).

Let us define the function

L := L(cl) := (log, (2”’ + . + 2”<J)l. (3)

It is easy to check that

.f’(~)3.r/(~)>-uU) (4)

for the optima in question. Indeed, the inequality .f’(u)>, y(u) is clear from the def-

initions. Suppose a tree T with leaves VI,..., L“,, h, := h(~‘,), is y-optimal, that is, it

satisfies (after suitable renumbering of the subtrees 7; from left to right) the equality

.y(u) = h(T*) = max{hr + a ,, . , h, + uy}. Expand T* to a complete binary tree T’ of‘

height s(u). Denoting by I;’ the (complete) subtree of T’ rooted in t:;, i = I,. , y, we

obviously have h(7;‘)>ui so that, (17;‘l/>2”1, ((T’(I = C IIT’ll 3 C2”#, and

q(u)=h(T*)=h(T’)=logz\lT’ll~ [log,(2”’ + ‘.’ + 2”~~)1 =L(u).

In this note we give a simple linear (in q) algorithm constructing an optimal tree and

an “almost” explicit formula for f(u) (and ~(a)) stated as follows:

Theorem 2.1. For ufl a E W (q E N),

f(u) = L(u) or L(u) + 1, da I= Ua). (5)

308 A. Seb6, 2. W~~ksmun I Discrete Applied Mathematics 91 (1999j 305-311

The proof of the theorem will be given below. The following Corollary trans-

lates the claims of Theorem 2.1 into upper bounds for Jtix and yex in terms of

ex(7;), i= 1,. . . , q. These bounds play an important role in [111.

Corollary 2.2. For arbitrary binury trees 7;, . . , & (q E N),

.f;vx(T ,...) T,)62 + ,l:yq ex(7;), gex(I;,...,T,)dl+ max ex(T)
I <i<q . .

(6)

UF& the bounds are sharp; they are also sharp in the foIloGtg particular case:

ex(7;)=...= ex(T,)=O impliesjkx(7i ,..., T,)62 und gex(T ,..., T,)bl. (7)

Proof. By definition (1) and remembering that a, :== h(z), we have

ai= Tlog211ZIIl +ex(?;)<l +log,(~Tjl +ex(l;)bl +log,I/7YI(+ ,ma:qex(7;).
.\

Taking the corresponding power of two and summing these inequalities for i = 1,. . . , q,
yields C 24 < 2 ‘+max e-Q7;)#)/ + . . + I1T,i/) or, by taking the logarithm, L(a)<

1 + max PX(T) + Ilog, C)/ 7;//1. U sin g nowj%T,...,T,)d 1 + L(a) - [log, C]jZ/ll,

which follows from (2) and from the first claim of Theorem, we get the first bound

in (6). The second is now obvious. q

3. Algorithm and bounds

Each time a vector a:=(a,,..., ay) is given, we add, for convenience, a0 := ay+l

:= ccl.

Among the triples a;_, ,a;,a;+l (i = 1,. . . , q) there is always at least one with the

property that not all three elements are equal and ai is the smallest. Two situations are

possible for such a triple: either

(A) ai is the only smallest element of the triple, or

(B) there are two smallest elements in the triple.

The following lemma paves the way for the algorithm.

Lemma 3.1. Suppose q 3 2.

1” If (A) holds, then f’(a) = f(a’), II zh ere a’:=(ao ,... a,_l,ui + l,a,+t ,... a,+,), und

the same trees ure f -optimuI for a and ,for a’,

2” If(B) hoi&, so that, suy, a;_! >a/ =a;+l, then WY have f(a)=f(ii), where ii:=

(a~, . ,a,_l, a, + l,~,+z,. . . ,uyi_l), and if ? is an f-optimal tree for 5, jjFj1 =

q - 1, then the tree obtained from F blj adding tlvo sons to the ith leaf ef F is

f-optimal for a.

Proof. Let (A) hold and let T be an .f-optimal tree for a, that is, T(a) =f(a), and,

say, vi = T(U). Then a;_! is a descendant of u, so that /z-t ahi, and consequently

h,_l +ai_t >h,+ai. T(a’) = T(a) follows, that is, f(a’)<T(a’)= T(a)= ,f(a)<J‘(a’),

and the equality follows throughout.

Now let the condition in (B) hold. If

I’, = I(u) and [*,+I = T(U), (8)

i.e. I‘, and t’+t are the left and the right sons of 24, then we define a new tree ? by delet-

ing t‘, and I:,, 1 from 7, so that u becomes a leaf. Clearly. ? is an ,J’-optimal tree for cl.

We have to show that a tree 7, ,f‘-optimal for a and satisfying (8) always exists.

Let z’, = l(u), so that ri+t is the leftmost node in the subtree rooted in M’ := Y(U). To

get the promised tree. rearrange 7 as follows: delete I‘;, identify IV with II and equip

I’,+~ with two sons (which become now new c, and [‘,+I). If t’, = I.(U), then h,_ 1 ah,.

Choose from the leaves v,, r’i+t one with lesser value of h. Let it be D;, that is, h, <I?,_ 1.

This time delete ~,+r from the tree T and add to I%, two new sons. @

The lemma permits, by systematically detecting triples satisfying (A) or (B) to

build a sequence u’ := u,a2,. . . with ,f’(a’) = .f(a’) = and with decreasing value of

y. When 4 = 1. f(a) is found and a tree ,f’-optimal for a is constructed.

An efficient way of finding a triple satisfying (A) or (B) is to find the smallest i with

U; dtr, +t (I <i dq, of course.) If ~2; < ~l,~l then (A) holds, whereas in case CI, = u, , 1

(B) is true. To translate Lemma 3.1 into an algorithm of complexity O(q), one has

only to assign in case (A) the value min{u,_r, a,, 1) to (I,.

The situation in the y-version is much simpler: let LIP <a2 be the two smallest COOT-

dinates of a. Now depending on whether al <uZ or (11 = LI> we can apply I” or 2’ (to

i -= I). Then do the same again. Paradoxically, despite the straightforwardness of the cl-

version, here the complexity of the problem will be O(q logq) instead of O(q), because

of the sorting we need at the start (we need to know the two smallest components of

(1 in each step).

Algorithm

Iu/x~~: a := (~1,. .uq) (We keep the convention u() :== LZ,,_,) := x), A’ t (0, 1 }.

Output: A tree T with q leaves, .f-optimal if X = 0 and $7-optimal if X == I.

I~?ititr/ixtim: If X = I, the execution below supposes that at > >a,. Hence, a sort-

ing algorithm should be invoked if needed. After that, the algorithm works indcpen-

dently of X.

Let a forest T be initialized by q trees. each tree 7; is associated with the value II,

and consists only of the root u,, i = I,. , q.

Burt: If q = 1, then STOP.

1. Find the smallest i with a, f~,+t (clearly, 1 <i <y).

2. If u, <Ll,L,,
assign the value min{a,_t,ai+t } to CI, (this minimum is always finite since (7 22)

Leave the forest and the value of q unchanged. CO TO 1.

3. If a, = a,+!.
update q.u, and the forest as follows. Reduce y by one. Replace the component LI,

in a by a, + 1 and delete a,,]. Build the tree with 7; and 7,+r being the left and the

right subtrees of the root, assign it to 7; and delete 7;,r. Renumerate the rest of trees

310 A. Seb6, Z. Waksmanl Discrete Applied Mathematics 91 (1999) 305-311

and components of a, that is, assign Tj := T&l and aj :=a,+~ for j=i + 1,. . . ,q.

GO TO START.

It is immediate that in the f-version the execution follows Lemma 3.1, so that after

termination the forest becomes an f-optimal tree and the only component of a is equal

to f(a). The same holds in the g-version, which may be shown in the same way as

in Lemma 3.1. It means, in fact, that sorting is always an optimal renumeration in the

g-version.

Clearly, once a has been sorted the overall execution of algorithm needs O(q) time.

However, the sorting needed for initialization in the g-version requires O(q log q) time.

Lemma 3.1 and its algorithmic proof are quite natural for solving the problem in

question. The most tricky single step of this note is the following:

Proof of Theorem 2.1. The inequality L(a)<f(a) is contained in (4). The inequality

f(a) <L(a) + 1 seems to be less trivial. It is equivalent to 2fca) <4 x 2L(a), and we

prove a slightly sharper bound for q 32: 2f(‘) <M := 2 Cyzil max{2”‘, 2”~+‘}. First, this

inequality is obviously valid if q =2. Second, during the execution of the algorithm,

f(a) does not change whereas A4 remains unchanged if (A) occurs and cannot increase

if (B) occurs. So, the bound follows by induction.

The equality g(a) = L(a) follows in a similar way: since al > . . . > a4, it is easy to

see that both g(a) and L(a) here are unchanged during the execution and are equal at

the end. 0

In conclusion, we remark that the problem under discussion belongs to the following,

apparently not yet identified, class of problems. Let a vector a = (al,. . . , a4) be given

and a binary operation, say x o y, be specified. It defines a function, say UT, on the node

set of any binary tree T with 1) T I(= q as follows: ar(rj) := ai, where Vi is the ith leaf

of T, and ar(u):=ar(l(u)) oar(r(u)) for any inner node U. Specifying in addition

a functional @ over the set of such functions, we have the following minimization

problem (in both f- and g-versions): find min @(ar) over all trees T with (IT11 =q.

For x o y := 1 + max{x, y} and @(ar) being the value of ar at the root of T, we have

the problem above. For x o y :=x + y and @(aT) equals to the sum of ar(u) over all

nodes u of T, we have - in g-version - the Huffman’s problem of building a minimum

redundancy code (see [7]). The f-version of this problem is solved in [6] with an

O(q logq) algorithm. These two examples provoke various questions in the general

case. For example, the characterization of (0, @) with a greedy solution algorithm or

an O(q) algorithm.

References

[l] M.E. Dyer, A.M. Frieze, On an optimization problem with nested constraints, Discrete Appl. Math. 26

(1990) 159-173.

[2] G.N. Frederickson, D.B. Johnson, The complexity of selection and ranking in X + Y and matrices with

sorted columns, I. Comput. System Sci. 24 (1982) 197-208.

A. SchB, 2. Waksman I Discretc~ Applied Matlwmatic,,s 91 (1999) 305-31 I 31 I

[3] H.N. Gabow. R.E. Tarjan, A linear-time algorithm for a special case of disjoint set union. J. Comput.

System Sci. 30 (1985) 209-221.

[4] 2. Galil. M. Meggido, A fast selection algorithm and the problem of optimum dtstribution of effort. J.

ACM 26 (1979) 58-64.

(51 D.S. Hochbaum, Lower and upper bounds for the allocation problem and other nonlinear optimization

problems, Math. Oper. Res. 19 (1994) 390&409.

[6] T.C. Hu, A.C. Tucker, Optimal computer search trees and variablelength alphabetical codes. SIAM J.

Appl. Math. 21 (1971) 514-532.

]7] D.A. Huffman, A method for the construction of minimum redundancy codes, Proc. Inst. Radio Ensrs

40 (1952) 1098-1101.

[S] D.E. Knuth, The Art of Computer Programming. Addison-Wesley. Reading, MA, 1973.

[9] A. Tamir. Further remarks on selection problems wtth nested constraints. Department of Stattstics

Report. Tel-Aviv University, Tel-Aviv, 1979.

[IO] R.E. Tarjan. Application of path compression on balanced trees, J. Assoc. Comp. Mash. (1979)

690-715.

[I I] 2. Waksman, More on optimization under nested constraints. Ben-Gurion University of the Negcv.

Tech. Report FC 95-06, August 1995.

