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Abstract

Schwiirzler, W. and A. Sebd, A generalized cut-condition for multifiows in matroids, Discrete
Mathematics 113 (1993) 207-221.

The class of binary matroids for which the so-called ‘cut-condition’ is not only necessary but
also sufficient for the existence of a multiflow was characterized by P. Seymour. We formulate
a natural generalization of the cut-condition and give a characterization of the corresponding
larger class of matroids in terms of forbidden minors.

1. Definitions and notation

Let M be a binary matroi< defined on the finite set E(M) and p a function
assigning integer values to the elements of E(M). We think of the negative values
of p as representing demands and of the nonnegative values as representing
capacities. Define F(p) = {e e E(M): p(e) <0}. A flow problem is a pair (M, p).
It has a solution if there exists a multifiow, that is a function @:€,(M)— R,
defined on the set €,(M) of all circuits C of M with |C N F(p)| =1 such that

{sp(e) if ee E(M)— F(p),
=—p(e) ifeeF(p).
If & can be chosen integer valued we say that (M, p) has an integer soiution.

A function m: E(M)— R is called a metric if m =0 and m(e) =m(C — {e}) for
all circuits C of M and for all elements e of C. (We use the notation
m(X)=Y..xm(e) for subsets X of E(M).) Given i:E(M)— R, we call the
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function m defined by 1(e) = min{/(X): X = {e} or X = C — e for some circuit C
with e € C} the metric induced by l. This is indeed a meiric. A is a family of
metrics if for every binary matroid M, A(M) is s sct of metrics defined on E(M).
For example, we shall consider the tamily A, of metrics having values in a subset
A of Z,; thus A, (M) is the set of metrics m: E(M)— A.

The following proposition is easy to prove via linear programming (Farkas’
Lemma). We shall actually use only the trivial *only if* part of this statement.

Proposition 1.1. A flow problem (M, p) has a solution if and only if
m-p=0 forallmeA; .

For graphs this is the so-called Japanese Theorem, see Iri [i] and Onaga and
Kakusho [S]. (In fact, it is easy to see that this statement holds for arbitrary, not
necessarily binary matroids.)

Let A be a family of metrics, and let (M, p) be a flow problem. Consider the
condition

m-p=0 forall me A(M). (1)

A binary matroid M for which this condition (1) is sufficient for the existence of a
solution of (M, p) ioi arbitrary functions p, will be called flowing with respect to
A. If (1) is sufficient for the existence of an integer solution for all Eulerian
probiems (M, p), then M will be called cycling with respect to A. (A flow problem
(M. p) is Eulerian if p(D) is even tor all cocircuits D of M.) It is easy to see that
cyclingness *ith respect to A implies flowingness with respect to A. (Let (M, »)
be a flow problem which satisfies (1); then (M, 2 - p) is Eulerian and satisfies (1)
too; hence there exits an integer solution @ of (M, 2-p) and consequently ;&
forms a solution of (M, p).) Seymour’s ‘=-flowing’ (‘*x-cycling’) corresponds to
‘flowing (cycling) with respect to A, " or ‘with respect to cut metrics’ (see
Section 2) in our terminology.

Note that the nontrivial direction oi Proposition 1.1 asserts that cvery binary
matroid is flowing witk respect to A, .

We shall denote by 6(M) the set of cycles (that is disjoint unions of circuits) of
the matroid M and by €* the set of cocycles. The symbols ‘\" and ‘/° will stand for
deletion and contraction respectively. For a dcfinition of these and others terms
of matroid theory see for example Welsh {9].

The mazin problem we are interested in, is to characterize matroids cycling with
respect to the family of all metrics; these matroids are also called ‘routing’. Such a
characterization would be an elegant extension of Seymour’s basic thcorems
about integer flows in Eulerian matroids (that is, about matroids cycling with
respect to cut metrics, see Section 2).

This problem szems to be difficult though. Seymour’s method does not extend,
because the sum operations fail to work in the usua! way. However, a particular
way of using them permits to extend Seymcur’s class of x-cycling matroids,
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allowing a characterization of routingness among matroids without certain
minors, namely AG(2,3), S; and M(H,) (see Section 2 and Sebs [7)).
Untortunately these three excluded minors are routing.

The main result of the present paper is that cyclingness with respect to a
naturally arising special family of metrics can be completely characterized. It
turns out that the above mentioned AG(2, 3), Sy and M(H,) are not cycling with
respect to these special metrics; the ‘particular use’ of sum operations remains
possible, generating now all the matroids we want.

An additional technical difficulty here, which may require some patience from
the reader too, is that checking the property for the ‘bricks’ of the decomposition
becomes a nontrivial, sometimes complicated task.

The characterization of classes of binary matroids flowing or cycling with
respect to certain families of metrics in terms of excluded minors is possible
because of the following.

Proposition 1.2. Let A be a family of metrics closed under minor taking, and let
M be a matroid flowing (cycling) with respect to A. Then all the minors of M are
also flowing (cycling) with respect to A.

We omit the proof since it is easy and contains no new element compared to
the analogous statements (3.4) and {3.5) of Seymour [8]. In this connexion ‘closed
under minor taking’ means that the restriction of the metric to the elements of
a minor defines a metric on that minor which also belongs to the family A.

2. A generalization of the cut-condition

Let Acc)(M) be the set of all cut-metrics of the binary matreid M, that is,
m € Aiccy(M) if and only if m is the incidence vector xP of a cocycle D of M.
Thus (M, p) satisfies the so-called cut-condition if and only if

m-p =0 forallme A(CC)(M)' (CC)

The class of inatroids flowing respectively cycling with respect to Acc) is
Seymour’s class of x-flowing respectively -cycling matroids (see [8]). The
following statement is obviously equivalent to [8, (4.5)].

Proposiiion 2.1. A binary matroid M is flowing (respectively cycling) with respect
15 Accy if and only if it is flowing (respectively cycling) with respect to Ay, 1;.

Thus, if we want to generalize the cut-condition, we have to go ‘beyond’ Ay ;.
Taking into account the previous proposition, Seymour’s well-known charac-
terization can be stated as follows.
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Theorem 2.2. For a binary matroid M the following are equivalent:
(i) M is cyciing with respect to Acc):
(i1) M is flowing with respect to Ay, ,;
{(iil) M has no F;, R\, or M(Ks) minor.

M(K;) is the polygon matroid of thc complete graph on 5 vertices; F; is the
Fano matroid (the projective plane of dimension two over GF(2)) and Ry,. a
matroid with ten elements, is well known by the leading role it plays in Seymour’s
decomposition thcorem of regular matroids. Binary representations of the latter
two matrsids can be found in Seymour [8].

A next natural question is to investigate the class of binary matroids flowing or
cycling with respect to Ay, ;- Here too, it will turn out that we can actually
restrict ov:selves to a special subfamily of such metrics (although it is not in
general true that Ay, »,{M) is a subset of the cone of the special metrics, unlike
Seymour’s Ay, (M) c cone(Ac(M))). If we consider metrics of the form
a ifeeD,—D,,

B ifeeD,—D,,
y ifeeD ND,,
0 feeE(M)—(D,UD,),
where a, B, y are nonnegative numbers and D,, D, are arbitrary cocycles, then
elementary calculations show that these metrics are nonnegative linear combina-
tions of the vectors ™, ¥ and x”*P: (A denotes the symmetric difference).
Hence m e cone(Ac(M)) and we do not get anything new. The situation
changes if we proceed to the case of three cocycles: Let D,, &, anc D; be three
cacycles of M and let Ay, (M) be the set uf ali functions m : E(M)— Z, defined
in the following way:
1 ifeeD,,
m(e)=492 ifee(D,UD;)—1, 2)
0 fee E(M)—(D,UD,UD,).

it is easy to see that these functicns are in fact metrics. T'ne following ‘generalized

crt-condition’ wiil turn out to be equivaient to the restriction of (1) to metrics in
Vs VTS

m(e)=

m-p=0 forall me Aez(M). (CC3)

This generalizes some met-ics introduced by Karzanov for graphs. Given an

‘mdirected graph G =(V, E) and a partition of V in r + s possibly empty classes

Ay, ...,A,, B,,...,B, such that A,U---UA, and B,U---U B, are non-
empty, define a metric m:E— Z, as follows:

!'1 ifxeA, yeB,.
m(xy)=432 ifxeA,yeA;(i#j)orxeB, yeB, (i#j),
C ifx,yeA,orx, yeB,.
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For fixed r and s let A, ,,(G) be the set of metrics defined on G in this .. .. !n
pariicular Auip1.1)(G) = Ac»(G). Such metrics play a crucial rele in the works
Karzanov 2, 3] It can be shown that A, and A,,p2.3, do not generate all of
Aypipir.s)- (However, we shall see that for the graphs we are interested in this is
true, see Corollary 2.6.)

The next tagorem is proved in Karzanov [2].

Theorem 2.3. Let (G, p) be an Eulericn flow probiein where the demand edges
e € F(p) are adjacent 10 at most five vertices. (G, p) has an integer solutic:: if and
only if m-p =0 for all m € Ayp2.3(M).

Ay is @ quite paturai matroid theoretical anaiogon for Appz.3). Obviously
Apip2.3y € Aoy for a given graph G choose the cocycles D, D, and D, of (2) as
follows (0X denotes the set of edges of E with one end in X ¢ V, the other one in
V-X):

Dy=d{A, UA,),
D,=6(A, U By), (3)
D:=06(A, L 33).

Corollary 2.4. K is cycling with respect 10 Ayipiz 5y, M{K) is cycling with respect
to A((‘(g,.

Remember that M(Ks) is not cyling with respect to A

In Sebd [7] it is proved that all the six non-isomorphic 2-sums of the three
matroids F;, M(Ks) and R, listed in Theorem 2.2 are minimal noncycling with
respect to A-,. (We define the 1-sum ¥, @ M, and the 2-sum M, @, M, of binary
matroids in the usual way, see Seymour [8]). These six matroids are called
bi-nonflowing ard denoted by B;; where i and j are the indices of the two
members of the 2-sum (for example Bs ; is M(K) @- F). Then it is shown in Sebd
[7] that a matroid without AG(2, 3), Sy and M(H,) minors is cycling with respect
to the family of all metrics (shortly: routing) if and only if it does not contain any
bi-nonflowing minors. While the class of routing matroids is much bigger than the
class exhibited by this result, Theorem 2.5 below presents a complete charac-
terization of cyclingness with respect to Acc3).

Fig. 1. H,,.
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Fig. 2. B.s.

Fig. 2 depicts the graph corresponding to Bs s, that was found and used as a
basic example by Middendorf and Pfeiffer [4].
We are now ready to state our main result.

Theorem 2.5. For a binary matroid M the following are equivalent.
(i) M is cycling with respect to Accs);
(ii) M is flowing with respect to Ay .2y;
(iii) M has no AG(2, 3), S, R\w, M(H,), Bs s, Bs 3, or B;; minor.

H, shown in Fig. 1 is Papernov’s graph (Papernov [6]). Binary representations
of the eight-element matroids AG{2, 3} {the affine geometry of dimension three
over GF(2)) and S, arz-given in Seymour [8].

The proof gives a somewhat sharper statement for graphs.

Corollary 2.6. For a graph G the following arc equivalent:
(i) G is cycling with respect 10 Apip2 3
(ii) G is flowing with respect to Ay, ; 2y
(iii) G has no H, or Bs s minor.
(Here of course Bs s denotes the graph rather than the graphic matroid.)

3. Proof of Theorem 2.5

The implication (i)= (ii) is trivial. (Remember that A3 is a subset of
A(().I.Z))'

To prove that {ii) implies (iii), we have to show that all the seven matroids
listed in (iii) are not flowing with respect to A, ,.,. Before doing this we
formulate a well-known observation, which will be useful more than once in the
sequel.

Lemma 3.1. Let M be a binary matroid and A = Z,. M is flowing with respect to
A, if and only if A, (M) < cone(A (M))

Proof. The ‘if’ part is a direct consequence of the Japanese Theorem. For the
‘only if’ part assume that the metric m is not expressible as a nonnegative linear
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combination of metrics in A,(M); by Farkas’ Lemma there exists a function
p:EM)—Z with m'-p=0 for all m'e A,(M), but m-p<0. This is a
contradiction to the flowingness with respect to A,. O

Proposition 3.2. AG(2,3), S, R,y and M(H,) are not flowing with respect to
A(()_I.Z)'

Proof. As a consequence of the Japanese Theorem it is sufficient to exhibit for
each matroid M e {AG(2, 3), Sy, R, M(H,)} a vector p,,: E(M)— Z such that
m-py=0forallme Ay 5y, but m, - pp, <0, where m,, is the metric induced by
the function /,: E(M)— Z,,

1 if p(e)=0,
b(e)= {lE(M)I if p(e) <O.

Choose py, for every matroid as in Seymour [8] in the proof of its nonflowingness.
(For p =puw, we have p(e)=-2 on the upper horizontal edge of Fig. 1,
p(e) = —1 on the two vertical edges and p(e) =1 on the remaining eight edges;
for p =paces» p(f)=-3 for an arbitrary element f and p(e)=1 for ee
E(AG(2,3))—f; for p =pg,, p(f) = —2 for the element f contained in all circuits
of cardinality 3, p(g) = —1 for the element g contained in no circuit of cardinality
3, and p(e) =1 for e € E(S;) — {f, g}; finally for p =py,., p(¢e)=—1 on a three
element subset of a four element circuit and p(e)=1 on the remaining seven
elements.)

The strict inequality m,, - p», <0 is easily checked, proving that there is no flow.

To show m - pyy=0forallme Ay, ,, let m € Ay, ;) be chosen arbitrarily and
P =pu; if moreover m € A, ,,, then we have immediately the result

m-p=1-p(E(M)—F(p))+2-p(F(p))=0
for all four matroids M. We thus may assume that there exists an element
ee E(M) with m(e)=0; denoting by f, the restriction of the function f to
E(M)—e, m, is a metric on M/e, and the inequality m - p =0 to be proved is
equivalent to m, - p, = 0.

This is trivial if M/e is flowing with respect to Acc); p was chosen so that it
satisfies the cut-condition (implying that the cut-condition is also satisfied in
(M/e, p.)), and clearly, in matroids flowing with respect to A, the cut-
condition implies m - p =0 via Lemma 3.1. Similarly, if m.(f) =0 for some f e
E(M) — e, then we immediately have m - p =0, because contracting two different
elements in any of the four considered matroids results in a matroid which is
flowing with respect to Acc).

Thus the only thing remaining to be proved is m,. - p. =0 for m,. € A, ,,. This
follows easily for all needed cases in the same way as in the beginning of the
proof of ‘m-p=0 for me A, ,)’. (Since m is a metric, an element g which is
parallel to f with m (f) =2, must also have m,(g) =2, and this is the only place
we use that m is a metric). O
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The result stating the nonflowingness with respect to Ay, 5y of the bi-nonflow-
ing mairoids is postponed to Proposition 3.4.

Proposition 3.3. F; is cycling with respect to Accs).

Proof. Let p: E(F;)— Z be Eulerian and suppose that (CC3) is satisfied. We have
to show that (F;, p) has an integer solution. Every proper minor of F; is cycling
even with respect tG Acc, (see Theorem 2.2). Hence we assume for the rest of
the proof that p(e) # 0 for all e € E(F).

In accordance with the terminology in Seymour [8] we shall call a binary
matroid M F-cycling with respect to A (where A is some family of metrics), if
F < E(M) and the validity of (1) implies the existence of an integer solution for
(M, p) for all Eulerian p with F(p)=F.

If |F| <2 then F; is F-cycling with respect to A (see (13.4) of Seymour {8]).

If |F| =5 then F coniains a cucircuit, {CC) is always violated and 5 is F-cycling
with respect to Ac¢.

Let |F|=4 and F = {e,, e, e, €,;} be not a cocircuit. Then it is easy to check
that there are circuits (and at the same time cocircuits) C, = {ey, e, €3, €5},
C.={e,, e, €4, €.} and C;= {e,, €3, e4, €5} such that (F;, p) (with F(p)=F) has
an integer solution if and only if p(C,) =0, p(C>) =0 and p(C;) =0, that is if and
only if (CC) holds. Thus F; is again F-cycling with respect to Acc).

This is also true if |F| =3 and F is not a cocircuit. Say {e,, e, e,}, {e,, €3, es},
{e), es, €5}, {€2, €3, €0}, {ea, €5, €7}, {e3, ey, €7} and {ey, es, €.} are the circuits
of cardinality three of F; and F = {e, e, €;}. Suppose that the cut-condition
(CC) holds for (4, p) (F(p)= F) and define p': E(F;)— Z by

ple)+1 ifi=1,
p'le)=3ple)—1 ifie{6,7},
ple;) if ie{2,3,4,5}.

We have to show that the cut-condition is satisfied for (£, p'). (Then the result
tollows by induction on |p(e,)|, because {e,, e,, €;} 15 a circuit and a flow of value
1 through it together with an integer flow for (£, p') results in an integer flow for
(F, p)). Assume not. Then necessarily p'(D,)<0 or p'(D,) <0, where D, =
{e,, es, €4, €7} and D, = {e;, es, e,, e-}. D, and D, are cocircuits, hence p(D,) €
{0, 1} or p(D-,)e {0.1}. This togetner with p({e,, e1, €3, e;}) =0 implies that
ple;))=0 for at least three elements ¢; of one of D, or D,, which is a
centradiction.

Finally let F be a three element circuit, say F = {¢, €., e;}. Define p’ as above
and p": E(F5)— Z by

ple)+1 ifi=1,
pie)=qple)—1 ifie{3,5},
p(e) ifie{2 4,6, 7).
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The functions p' and p” are Eulerian. As in the preceding case we are done by
induction on |p(e,)} if at least one of (F;, p’), (F;, p") has an integer solution.

Assume not. Then by the induction hypothesis there are metrics m', m" e
A (F) such that m'p’ <0 and m"p" <0.

Claim: m', m" € Aco)(F).

For an arbitrary cocircuit D let mp = x” +2 - x*~P. It is easy to see that
Acen(F) — cone(Acey)(F) = {mp: D cocircuit of F}.

We conclude 0<m,, p=mp p'<mpp’ for an arbitrary cocircuit D and for
D, = {e;, es, e, e;}. The same argument works with p” instead of p’. This proves
the Claim.

Now there is only one possible choice of m' and m". Let D’ = {e,, ey, €,, €;},
D" = {e,, €1, 4, s}, m' =x° and m" = x"". Then m'p' =m"p" = -2 and m'p =
m’p =0. But

O<mpp-m'p—m'"p=2-p(e,) <0,

a contradiction. O
Proposition 3.4. Bs s, Bs; and B, ; are not flowing with respect to Ay, »;.

Proof. Let M|, M, e {M(Ks), F;}. M, and M, are—by Corollary 2.4 and Proposi-
tion 3.3—flowing with respect to Ay, ,, and—by Theorem Z.2—minimal not
flowing with respect to A, ,,. Therefore there exist functions p,: E(M;)— Z — {0}
(i=1,2) with m-p=0 for all me Ay, ,(M;) and m-p <0 for some me
Ap1.2y(M)). Let me Ay, (M;) with M(e) =0; M;/e is flowing with respect to
A1y, by Lemma 3.1 the restriction of m to E(M;)—e is a nonnegative linear
combination of metrics in A ,;,(M;/e) and thus m econe(A,,(M,;)). We
conclude:

m-p;=0 forallme Ay (M)— An(M),
m-p;<<0 for some me Ay, (M,).
To simplify matters let E;=E(M;) and F,=F(p;). Choose f; € E; such that
pi(fi} >0 and p(f) <0.

Roughly speaking, we shall proceed as follows: First, by blowing up ‘capacit;
elements with an appropriate factor «;>1 we guarantee the existence of a
fractional flow; second, we again prevent M, from having a flow by muitipl, ...
pi(f;)) with a factor B less than but not too far from one; third we multiply
‘capacitics’ and ‘demands’ in M, by some factor y in order to have equal flows
‘through’ f, and f,. More precisely, let

[ pi(e) ifeek,
gile) = im “pi(€) if ee E,— (FUf),
B-a-p(f) ife=f,

“)
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and
)_{y-pz(e) ifeek,
PO=1y . a,-pole) ifecEr—F.

where
a;=—2-p(F)/(pAE;—F) (ie{l,2}),

ﬁ = max{l/al, 1/“’2}'
= =B~ PRPAF).

It does not cause problems that the functions ¢, and ¢, are possibly fractional;
they can be made integral at every stage of the proof by multiplying them with an
adequate factor.

For k€ {0, 1,2} and i € {1, 2} define

Sk(M,') = min{m ‘q;itm € A(l),l;Z}(Mi)v m(f,) = k}
Chhim1l. 1<a;<2(i=1,2), B<1;

Let p; be the function obtained from p; by multiplying ‘capacities’ with a;. The
values a; are chosen such that min{m -p;:me A, ,,(M))} =m] - p/ =0, where
m{ is the metric with value 2 on F, and value 1 on E; — F.. Thus, by (4), a; > 1
and p<1.

Assume «;=2 and let m e Ay ,,(M;) be the everywhere one metric; then
m;-p/=2-m-p;=0, a contradiction.

Ciaim 2. S\(M,) =0; §;(M,)=a, - (B—1) - p\(f1); S:(M,)=0.

Claim 1 yields g,(e)=p,(e) for all ee E,— F. Hence m-q,=0 for all
me Ag,1.2)(M)) — Ay 2y(M,). Now to get the values of S, S, S, respectively,
consider the everywhere zero metric, the metric m; and the metric having value 1
on E, ~ (F,Uf}) and value 2 on F, Uf,.

Claim 3. S(M;)=0; $(M>)=v-(1—ay) - paf2); $2(M2) =0.

Sy =3, =0 again is an immediate consequence of the choice of a,. To find the
value of S, we first consider metrics without zeroes:

min{m - q>:me A1 2y (M2), m(f)=1}
=m3;-q:—q:(f) =—q:(f) > (1-az) - g:(f) =7 - (1 —as) - pf>),
because a; <2 by Claim 1.

Now we turn to metrics with at least one zero value; they are nonnegative
linear ccmbinations of metrics in Ao.13(M,) and it is easy to see that
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min{m - q-:m € A\ 2 — A2y, m(H) =1}
=min{m - g2 me Ay, m(fz) =1}.

Thus if m e Ay ,(M,) and m(f;) =1, then

m-g:=v-m-py+y-(az—1)- > m(e)-psle)

ecel:— K

=y-m-pa+y-(1—a)- > m(e)-pie)

cer

=y -(1—as): pAf)
Claim 4. S,(M,) + S.(M) =0 (k € {0, 1, 2}), 2 - S,(M,) + S:(Ms) <O0.

This can be seen by simple calculations using the values of S,(M;) found in
Claim 2 and Claim 3.
Let now M =M, ®, M, with E(M) = (E, - f;) U(E,—f,) and

_ q.(e) ifeeE,—f,
q(e)_{qz(e) ifee E;—f.

Claim 5. If m e Ay 12,(M), then there exists a number k € {0, 1, 2} such that m,
and m, defined by

m(e) ifeeE;,—f,

m'(e)={k if e =f,

are metrics on M,, M, respectively.

Let 2={C—fi:fieCeM)}U{C—fi:freCe €(M)}: m, and m, are
metrics on M, M, respectively, if and only if

2-m(e)—m(D)sk<sm(D) forall De2.

Assume there does not exist such a number k. Then there exist D, D' € & with
2-m(e)—m(D)>m(D'), that is 2-m(e)>m(D AD')+2-m(DND'). If e€
D A D’, then m(e)>m((D A D’)—e), a contradiction, because D A D' is a
cycle of M, and if e e D N D' we conclude M(D A D') <0, again a contradiction.

Now choose k = max{0, max{2 - m(e) —m(D): e € D € @}}; this implies k <2,
because if 2-m(e)—m(D)>2, then 2-m(e)>m(D)+2=m(e)+2 and hence
m(e) > 2, a contradiction.

Claim 6. M is not flowing with respect to Ay, 2.
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Giv. . m € Ay 2(M), choose k as in Claim 5. Then
m-qg=m,-q,+m;-q>=85(M,)+ S5(M>) =0

by Claim 4.
By Claims 2 and 3 there exist metrics m; € Ay, (M) (i=1,2) with
m(fi) =1, my(f) =2, m - q,<0 and m; - g, =0. Obviously m defined by

(2-m(e) ifeek,—-f,
m(e) =1 : .
"'lz(e) lfeeh:_fz
is a metric in Ay, (M), but m-q=2-m-q,+m,-q><0 by Claim 4. Thus
(M, g) has no solution. O

Fig. 2 showing Bs s illustrates Proposition 3.4. If g(¢) == -3 for all dotted edges
and q(e) = 4 for the remaining ones, then 11 - q =1 for ali m e A, 5,(Bs5), but
there is no tlow.

It remains to show that (iii) implies (i). By combining Theorem 2.2 with a
twofold application of Seymour’s ‘Splitter Theorem’ ((6.3) in Seymour [8]) we
obtain the following.

Proposition 3.5. Every binary matroid with no AG(2, 3), Ss, Ry, or M(H,) minor
may be obtained by 1- and 2-sums from matroids cycling with respect to Ay and
copies of F; and M(K5).

Restricting Proposition 3.5 to graphic matroids—that is to those binary
matroids without F5, F7, M*(Ks) and M*(K, ;) minors—one gets the following.

Corollary 3.6. Every graphic matroid with no M(H,) minor may be obtained by 1-
and 2-sums from graphic matroids with no M(Ks) minor and copies of M(Ks).

Proof. F is a minor of AG(2, 3) and S;, M*(K ;) is a minor of R, and M(K5) is
minor of M(H,,). [

It was shown in Seymour [8] that taking the 1-sum or 2-sum of matroids cycling
with respect to A, results in a matroid cycling with respect to A.,); it is also
trivial to verify that A.s)-cyclingness is preserved under taking the l-sum of
binary matroids. The example of Bs s shows that the same is not true for 2-sums.
However, for our purposes the following ‘skew’ decomposition lemma, which
seems to be a characteristic feature of metrics more general than cut-metrics (see
Sebd [7]). turns out to be sufficient.

Proposition 3.7. Any 2-sum M, ®, M, of a matroid M, cycling with respect to
Accyy and a matroid M, cycling with respect to A is cycling with respect to
Ace-

Proof. Let E(M,)NE(M;)={f} and M =M, ®, M,. Choose p: E(M)— Z such
that (M, p) is Eulerian and (CC3) is satisfied. We define functions p;: E(M,)— Z
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(i € {1, 2}) in the following way:
(e ifee E(M,)) - f,
Pi(e)={p )i—l e )=
(-1)y"'q ife=f,
where g =min{p(D —f):fe D e €*(M,)}. Let D, be a cocycle of M, with
p(Du—f)=q.

Claim 1. p; (i € {1, 2}) is an Eulerian function.

Let D, be a cocycle of M,. If f ¢ D;, then p;(D;) = p(D,)=0mod 2, because D,
is also a cocycle of M. If f € D;, then

piD;)=piD; = f) + pf)
=p(D;—f)+p(Dy—f)=p(D; & Dy)=0mod 2,

because D; A D, is a cocycle of m.
Claim 2. (M,, p,) satisfies (CC).

Let D € €*(M,). If f ¢ D, then again D is a cocycle of M and p,(D) =p(D)=
0, because we assumed that (CC3) and so in particular (CC) is satisfied for
(M, p). If feD, then the definition of g implies the following inequality:
pAD)=pxAD = f)+pf)=p(D ~f) —p(Dy—f)=0.

Claim 3. (M,, p,) satisfies (CC3).

To each subset A of E(M,) we assign a subset A" of E(M) in the following way:
o_[A iffeA,
laaD, iffeA.
It follows from the definition of p, and D, that
pi(A)=p(A") (5)

and that if A is a cocycle of M, then A° is a cocycle of M. The following two
properties are easily checked: (A U B)’=A"U B" and (A — B)" = A" - B".

We have to show that p,(D,) +2- p,((D,U D;) — D)) is nonnegative for every
choice of cocycles Dy, D,, Ds€ €*(M,). As (M, p) satisfies (CC3) it is sufficient
to verify the following equality:

pi(Dy) +2-p,((D,U Ds)— D)) =p(DY)+2- P((D(z) U D) — DY). (6)

This can now be shown by an easy calculation applying the above rules. In
particular we get

p((D?U %) - (l’)=p(((D2UDB)—Dl)")r
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from where the result follows by an application of rule (5). Thus Claim 3 is
proved.

As M, (respeciively M,) was assumed to be cycling with respect to A ¢y
(respectively Accy). the above claims guarantee the existence of integer flows @;
in (M,, p;) (i € {1, 2}). @, consists of a list of cycles of €,(M;). Suppose without
loss of generality that g =0 (to treat the case ¢ <0, simply interchange the roles
of M, and M,) and that precisely the first k; cycles of each list contain the clement
f. It follows from the definition of a flow that k, < q = k». After deleting the first
k> —k, cycles from the second list @, the union of the two lists contains exactly
k, cycles of €(M,) and k, cycles of €(M.) passing through the element f. Build k,
pairs (C,, C>) (C; € €(M,)) of the cycles passing through f and replace each pair
by C, A C,. It is easy to see that the list of cycles obtained in this way represents
an integer flow of (M, p). O

Corollary 3.8. Any 2-sum G, ®- G: of a graph G, cycling with respect 10 Ayips, 3
and a graph G, cycling with respect to A, is cycling with respect t0 Apip2.3)-

Proof. The proof of Proposition 3.7 can be copied step by step, replacing Accs)
by Anipe.3)- In particular equation (6) holds. To convience ourselves that the
right-hand side of (6) is nonnegative, we observe that if a metric m, € A2, 35(G))
is defined by three cocycles D,, D,, D; € €*(G,) (just as in (3)), then the
cocycles DY, DS, D% of €*(G) (G=G,®,G.) represent a metric me
Bupz3iG). O

i3

The following result is proved in Sebd [7].

Proposition 3.9. Let the connected binary matroid M be built up by 2-sums from
M. M, ..., M, (k=2), and suppose that there are indices i and j, 1 <i<j=<k,
siuch that M;, M, € {M(Ks), F;}. Then M contains a minor M; > M..

To continue with the proof of Theorem 2.5 we assume that M dces nct have
any of the minors listened in (iii). M is isomorphic to the 1-sum of its connected
components, and by Proposition 3.5 every connected component N of M may be
obtained by 2-sums from matroids N,, N>, ..., Ny, which are either cycling
with respect to A, or copies of £, and M(Ks). N does not have a minor B,
(i.j€{5,7}), and hence, by Proposition 3.9, at most one of the terms N, is
isomorphic to F; or M(K;). Thus by Corollary 2.4 and Proposition 3.3 and 3.7, N

is cycling with respect to A3, and so is M. This completes the proof of
Theorem 2.5. O

Proof of Corollary 2.6. (i) = (ii) is trivial. (ii) = (iii) follows from Propositicis
3.2 and 3.4. (iii)=>(ij follows from Corollarics 2.4, 3.6 and 3.8 ard from
the (graph-theoretica! version of) Proposition 3.9. O
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