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Abstract

We prove that a certain simple operation does not create odd holes or odd antiholes in a graph unless there are already some.
In order to apply it, we need a vertex whose neighborhood has a coloring where the union of any two color classes is a connected
graph; the operation is the shrinking of each of the color classes. Odd holes and antiholes do have such a vertex, and this property of
minimal imperfect graphs implies the strong perfect graph theorem through the results of the paper. Conceivably, this property may
be a target in the search for a proof of the strong perfect graph theorem different from the monumental achievement of Chudnovsky,
Robertson, Seymour, and Thomas.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction, definitions, results

Does anyone still remember monsters? According to Vašek Chvátal it was the nickname given by Pierre Duchet to
minimal counterexamples to Claude Berge’s strong perfect graph conjecture.1 Study of monsters used to be a line of
attack on the conjecture: the hope was that by establishing more and more properties of monsters, one would eventually
arrive at a list so restrictive that it would demonstrate their nonexistence. Another line of attack was following the hope
that every Berge graph either has a relatively transparent reason for perfection or there is a property—preferably one
that allows recursion with algorithmic advantages, for instance decomposition—absent from all minimal imperfect
graphs, or at least from those of minimum cardinality (or smallest in some fixed good ordering). The proof of the
conjecture by Chudnovsky et al. [3] came from the latter direction.

The fact that this proof is long and difficult stimulates alternative proofs or simplifications. In particular, even though
we now know that there are no monsters, interest in arguments independent of [3] that establish some relevant properties
of monsters persists. In the present paper, we show by such an argument that in a smallest monster G,

every vertex has degree at least 2�(G) − 1,

� Research partially supported by the “ADONET” Marie Curie training network of the European Community.
E-mail address: Andras.Sebo@imag.fr.
1 Through a sequence mutations the preliminary title of my talk at the Princeton meeting on perfect graphs in September 2001 was “Berge

Monsters”. This is nonsense: by definition, every Monster is Berge. Discussing this with Claude we finally arrived at a related nonmathematical but
at least true statement: no Berge is a monster.

0012-365X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2005.12.041
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immediately implying the strong perfect graph theorem (SPGT) for claw-free graphs [12]. In the direction of simplifying
the other line of attack, any property of Berge graphs that does not follow trivially from the nonexistence of odd holes
or odd antiholes as induced subgraphs may help. We show

an operation that does not spoil the Berge property,

that decreases the size of the graph, that changes the clique number in a way closely related to antiholes, that does not
change the stability number, and that may turn out to be more efficient than taking induced subgraphs.

Graphs in this paper will always be undirected. Parallel edges and loops are allowed, but they are irrelevant to our
inquiry, and so they may just as well be deleted. The set of all vertices of G will be denoted by V (G) and the set of all
edges of G will be denoted by E(G). A subgraph arises by deleting edges and vertices from a graph; it is not necessarily
an induced subgraph. The subgraph of G induced by a subset X of V (G) will be denoted by G(X).

A chord of a circuit or a path is an edge that joins two vertices at a distance greater than one on the circuit or the
path. A hole in a graph is its induced subgraph on at least five vertices which is a chordless circuit. An antihole in G is
a hole in G. A hole on k vertices will be denoted by Ck . The length of a path is the number of its edges. A chordless
path on m vertices (whose length is m − 1) will be denoted by Pm.

A stable set is a set of vertices without induced edges and a clique is a stable set of the complementary graph G.
The stability number �(G) is the largest cardinality of a stable set in G, the clique number �(G) of G is the largest
cardinality of a clique in G, and the chromatic number �(G) is the smallest cardinality of a partition of V (G) into
stable sets (which are called color classes). Every G satisfies �(G)��(G); a graph is called perfect if �(H) = �(H)

for every induced subgraph H of G. Berge’s strong perfect graph conjecture states that a graph is perfect if and only if
it contains neither an odd hole nor an odd antihole; following Chvátal and Sbihi [5], a graph is called a Berge graph if
it contains neither an odd hole nor an odd antihole.

If xy ∈ E(G), then we say that x and y are adjacent. The neighborhood of a vertex v in a graph G is defined as
the set of all vertices of G adjacent to v; it is denoted by NG(v) or simply by N(v). The closed neighborhood of v is
defined as the union of N(v) and {v}; it is denoted by N [v]. We write N(v) for V (G)\N [v].

A coloring of a graph G by �(G) colors will be called optimal; G is called uniquely colorable if �(G) = �(G) and
G has a unique optimal coloring. A coloring of G will be called connected if the union of any two color classes induces
a connected graph. Clearly, the optimal coloring of a uniquely colorable graph is connected. (This is not reversible
though, even not for perfect graphs: C6 has two distinct optimal colorings and both of them are connected. Also, a
perfect graph can have a connected coloring that is not optimal: the line graph of K3,4 has a natural partition into 3
cliques and also into 4 cliques; the former is an optimal coloration, but the latter is also connected. Note also that a
graph does not necessarily have a connected coloring even if it is perfect: for instance P 5 does not have any.) We will
say that a subset X of V (G) is uniquely colorable if G(X) is uniquely colorable.

The shrinking of a subset T of V (G) means the replacement of T by just one vertex, which is then joined to all
vertices adjacent to at least one vertex in T. We consider the edge-set of the new graph to be the same as that of the
original graph, except that some edges become loops and the parallel edges may appear; these are irrelevant and may
be immediately deleted. When G is a graph, v is a vertex of G, and f is a coloring of G(N(v)), we let G¬(v, f ) denote
the graph arising from G by shrinking the color classes of f one by one and by deleting v (along with all edges adjacent
to v); when we write G¬(v, f ) we always suppose that v ∈ V (G) and that f is a connected coloration of N(v); when
G(N(v)) is uniquely colorable, we write simply G¬v for G¬(v, f ) with f the optimal coloring of G(N(v)). If G is
the odd antihole C2�+1 and if v is any vertex of G, then G¬v = K�+1 (� ∈ N).

In this paper we show the following results:

Lemma 1.1. If G is a graph, �(G) < �(G), v ∈ V (G) and f is a coloring of N(v) with �(G) − 1 colors such that
�(G¬(v, f ))��(G), then G¬(v, f ) is also imperfect.

Theorem 1.1. If G is a minimal imperfect graph different from an odd antihole and v is a vertex of degree 2�(G) − 2
in G, then the subgraph of G induced by NG(v) is uniquely colorable and G¬v is imperfect.

Theorem 1.2. If G is a Berge graph, v is a vertex of G, and f is a connected coloring of NG(v), then G¬(v, f ) is also
Berge.
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It is easy to see by examples that this theorem is no more valid shrinking only one of the color classes (see
Section 4), or if the operation is defined on a subset of the neighborhood.

It is well known [10,9,13,15] that every vertex of every minimal imperfect graph G has degree at least 2�(G) − 2;
the conjunction of our two theorems guarantees that the smallest monster G cannot have a vertex of degree 2�(G)− 2.
In other words, the SPGT is equivalent to the existence of a vertex of degree 2� − 2 in every minimal imperfect graph
G or its complement. Comparing the Lemma and Theorem 1.2 one gets the following corollary that will turn out to
be sharper (since the conditions of the lemma can be easily derived from those of Theorem 1.1, see the proof of the
latter):

The SPGT can be derived from the following:

In every minimal imperfect graph G other than an odd antihole, there are a vertex v and an optimal coloring f of
N(v) such that �(G¬(v, f ))��(G).

2. Proof of Theorem 1.1

Let G be an imperfect graph, v ∈ V (G), and let us write � = �(G) and � = �(G). �

Proof of the Lemma. Suppose for a contradiction that G¬(v, f ) is perfect. Then by the condition �(G¬(v, f ))�
�(G) it has an optimal coloration with �(G) colors. Since f is an optimal coloration of N(v), it has � − 1 classes
becoming vertices of G¬(v, f ); therefore, there is a color class S in this optimal coloration of G¬(v, f ) that does not
intersect N(v). But then S ∪ {v} together with the other � − 1 color classes of G¬(v, f ) provides a coloration of G
with � colors, contradicting the condition �(G) < �(G). �

Proof of Theorem 1.1. Let now G be a minimal imperfect graph different from an odd antihole and v of degree 2�−2
in G and let N denote the subgraph of G induced by NG(v).

Since G is minimal imperfect, �(N) = �(N) = � − 1.

Claim 1. N is uniquely colorable.

Let us assume the contrary: N admits two distinct � − 1-colorings, one with color classes Si (i = 1, 2, . . . ,� − 1)
and the other with color classes Ti (i = 1, 2, . . . ,� − 1); since the two colorings are distinct, we may assume that T1
is distinct from all Si .

Consider now the incidence vectors of the sets Si ⊂ N (i =1, 2, . . . ,�−1) and T1 ⊂ N in RN , where |N |=2�−2.
They all meet every �-clique in exactly one element and therefore the difference of the � − 1 incident vectors in RN

of Si ⊂ N (i = 1, 2, . . . ,� − 1) and T1 ⊂ N is a set of � − 1 linearly independent vectors all orthogonal to every
�-clique in RN .

Therefore, there are no more than 2(�−1)−(�−1)=�−1 linearly independent �−1-cliques in N(v), contradicting
Padberg’s [11] result which guarantees that G contains � linearly independent cliques of size � which contain v. (The
algebraic argument that we have used just now is subsumed in a result of [7].)

Claim 2. �(G¬v)��.

Let Q be an arbitrary clique in G¬v, let Q0 denote the set of all vertices in Q that are vertices of G (rather than shrunk
color classes of N(v)). Now Q0 ∪ N [v] does not contain all the vertices of G, since then v would not be contained in
any stable set larger than 2, so (since G is minimal imperfect) ��2 would follow implying that G is an odd antihole,
contradicting the assumption.

So Q0 ∪ N [v] induces a perfect graph, and therefore it is �-colorable in G; such an �-coloring uses exactly
� − 1 colors on N(v), and then by Claim 1, the classes of this coloring are those of the unique � − 1-coloring
of N(v), which, after shrinking, contain Q\Q0. Therefore, Q is �-colored, whence |Q|�� and the claim is
proved.

Since G is minimal imperfect �(G) < �(G); according to Claim 2 the other condition of the lemma is also satisfied,
and therefore its assertion is true as well. �
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A. Sebő / Discrete Mathematics 306 (2006) 2582 –2592 2585

S

V V

bipartite

Fig. 1. No odd hole after the operation.
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Fig. 2. C0 and its ears.

3. Proof of Theorem 1.2

Let {S1, . . . , Sk} (k ∈ N) be the color classes of f (partitioning N(v)), and N∗ := {�1, . . . , �k} the vertices that they
become after shrinking; N∗ is a clique of G∗ := G¬(v, f ).

We first prove that G∗ does not contain any odd hole (Fig. 1). Indeed, an odd hole would contain one or two vertices
from N∗:

• If it contains only one vertex � ∈ N∗ (Fig. 1 left), which is the shrunk color-class S ⊆ N(v), then the corresponding
edges of G form either an odd hole or an odd chordless (s1, s2)-path (s1, s2 ∈ S), all vertices of which but s1, s2 are
in N(v). In this latter case add v and the edges s1v, s2v to get anyway an odd hole in G, a contradiction.

• If it contains two vertices, �i and �j (Fig. 1 right), then replace the edges a�i , �i�j , �j b of the hole by corresponding
edges and a path: a�i , and �j b can be replaced by asi , sj b, (si ∈ Si, sj ∈ Sj ) and �i�j by a chordless (necessarily
odd) path in the bipartite graph G(Si ∪ Sj ) using that this graph is connected by assumption. We finally get an odd
hole in G, a contradiction.

We prove now that G∗ does not contain an odd antihole. We have already proved that it does not contain any C5.
For a contradiction let C be an odd antihole of G∗, |C|�7, and C has m ∈ N common vertices with N∗; let these be

�1, . . . , �m in one of the two cyclic orders of C that we fix, and let C0 := C\{�1, . . . , �m} ⊆ V (G), and m0 =|C0|− 2
(Fig. 2). Clearly, since N∗ is a clique, the predecessor and the successor of �i on C are not in N∗, for any i ∈ {1, . . . , m},
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P

si
sj

v

a b

Fig. 3. There is an edge between si and sj .

and all other vertices of C are neighbors of �i in G∗. Therefore, {�1, . . . , �m} is a clique, and |NG∗(�i ) ∩ C0| = m0.
The set C0 ⊆ V (G) induces a subgraph of G with m components, all paths. Such a path of G (the entire component)
will be called an ear (of C); if it has p vertices, we will also say that it is a p-ear, and if the preceding and succeeding
vertex on C are �i and �i+1 (i = 1, . . . , m, if i = m,then i + 1 := 1), then we say the ear is attached to i and i + 1.

As you see, we do not include the vertices �i , �i+1 (i ∈ {1, . . . , m}) to the ear attached to them; this ear will be
referred to as the ear (i, i + 1) or (i + 1, i). The ear (i − 1, i) is its predecessor and the ear (i + 1, i + 2) its successor,
both are ears consecutive to it. The ears (i − 1, i) and (i, i + 1) are consecutive ears; we will also speak about second
consecutive ears, for instance (i − 1, i) and (i + 1, i + 2). We will use similar terms for the relative place of vertices
on C with respect to the fixed cyclic order. (A vertex of V (G∗) is consecutive to another on C if and only if they are
neighbors in G. We speak about ‘neighbors’ in G and consecutive vertices on C.)

If every Si has a representative si that has the same neighbors in C0 as �i , then replacing �i by si (i = 1, . . . , k)

we get an odd antihole in G: sisj ∈ E(G) also follows, for otherwise let P be the longer of the two paths of G that
are the components of C\{�i , �j } in G, and a, b the two endpoints of P. Since |C|�7 we have |P |�4, and it follows
that v, si, b, a, sj , v is a hole on five vertices (Fig. 3). In general, we will be able to find an odd antihole without these
conditions, but will need some case-checking.

Unfortunately, such a representative does not always exist. (For P5-free graphs it can be easily found though:
supposing that there is none, either a C5 or a P5 can be found easily using a few lines of the proof of Claim 1 below,
similarly to Fig. 3.) However, something weaker does exist, and similar, but somewhat refined arguments will turn out
to be sufficient for proving the theorem from these weaker statements.

The weakening consists in allowing that from among the k0 vertices that are not consecutive to �i on C at most one
vertex can be missing from the neighbors of the representing vertex. The following definition squeezes out some useful
particularity for this missing vertex:

Let us say that si (i ∈ {1, . . . , k}) represents Si (for C0) if si ∈ Si , and

NG(si) ∩ C0 = NG∗(�i ) ∩ C0, (1)

or if there exists p = p(si) ∈ NG∗(�i ) ∩ C0 such that

NG(si) ∩ C0 = NG∗(�i ) ∩ C0\p (2)

holds where p has all of the following properties:

(i) p is not second consecutive to �i ,
(ii) p is not the endpoint of an ear, unless there exists ti ∈ Si so that p(ti) ∈ C0 is consecutive to p(si) on C, and then

p = p(si) is either the endpoint
• of a 3-ear attached to �i , or
• of a 2-ear not attached to �i , in which case p is the first vertex of the 2-ear (in the fixed cyclic order of C).
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We define p(s) for s ∈ ∪k
i=1Si exactly if (2) holds otherwise we leave p(s) undefined. Keep in mind that if si

represents Si and sip /∈ E(G) for some p ∈ C0 not consecutive to si , then (2) holds and p = p(si).
We first present the intuition behind the rest of the proof: we want to arrive at an odd circuit in G that does not

induce any triangle. (Such an odd circuit contains an odd hole as induced subgraph.) We start with C. We will first of
all make sure that p(si) is not a vertex ‘second consecutive’ to �i . Secondly, we will push p(si) ‘towards the middle’
of the ear that contains it (this will be necessary for proving that si is adjacent to sj with some exceptions that are easy
to control). ‘Pushing’ will be possible between two consecutive points of C0; it follows that we are obliged to take for
p(si) the endpoint of an ear only if the other choice is a vertex second consecutive to �i or the other choice is also an
endpoint of an ear, and in these cases we will be able to finish as well.

Claim 1. For every i ∈ {1, . . . , k} there exists si that represents Si .

This relies on the following simple fact on families of sets:

Fact. Let E be a family of subsets of a set S none of which contains the other (a clutter). If the components of the graph

H := {ab: there exist A, B ∈ E, a ∈ A\B, b ∈ B\A}

are chordless paths then |E|�2, and for the A �= B ∈ E, |(A\B) ∪ (B\A)|�3.

It is not hard to imagine how the Fact will be applied: the situation of Fig. 3 does also occur if si and sj are in the same
color-class. In that case ab ∈ E(G) is not possible (we would have a C5-like on the figure), so ab ∈ E(G). Therefore,
a color class S of NG(v) and the family E defined as the inclusionwise maximal elements of the form NG(s) ∩ C0,
(s ∈ S) define a graph H (see the fact) which is a proper subgraph of C in G. So all components of this H are induced
paths! �

Proof of the Fact. Suppose E is a clutter and the components of H are chordless paths. For A �= B ∈ E we have:
(|A\B|, |B\A|) is (1, 1), (1, 2) or (2, 1), otherwise we get circuits of size four or vertices of degree at least three. Now
if for a contradiction C ∈ E is a third set different from these, then either all three sets have an element which is in
neither of the two others, and these form a triangle in H, a contradiction; or say C has no such an element, that is, we
can suppose C ⊆ A ∪ B.

Since C is contained neither in A nor in B, C ∩A\B �= ∅, C ∩B\A �= ∅. Finally, A∩B\C �= ∅ is also true, because
C ⊇ A ∩ B would imply C ⊇ A (if |A\C| = 1), or C ⊇ B (if |B\C| = 1). Choosing an element in each of the three
sets C ∩ A\B �= ∅, C ∩ B\A �= ∅, A ∩ B\C �= ∅, the three chosen elements form a triangle, contradicting again the
condition on H, and this contradiction proves the fact.

To prove the claim note that the graph Hi defined from the family Ei on the set S := C0 like in the Fact, where

Ei := {X ⊆ C0 : X = NG(s) ∩ C0 for some s ∈ Si, and X is maximal}, (3)

is a subgraph of G(C0) for all i = 1, . . . , k. This is true, because for s, t ∈ Si , a ∈ NG(s) ∩ C0\NG(t), b ∈
NG(t) ∩ C0\NG(s) imply ab ∈ E(G). For otherwise, v, s, a, b, t, v would be a hole on five vertices! (We just
repeated formally the argument before the proof of the Fact—all this can be followed in Fig. 3 replacing si , sj by
t and s.)

But G(C0) is a proper subgraph of a hole, so its components are chordless paths. Then by the Fact, Ei has at most
two members, and their union obviously covers all the k0 > 0 neighbors of �i in C0. In particular, Ei =∅ is not possible.

If Ei has only one member, then let it be NG(si) ∩ C0, si ∈ Si : (1) holds so si represents Si .
If Ei has two different members, NG(si) ∩ C0, NG(ti) ∩ C0, then assume |NG(si) ∩ C0|� |NG(ti) ∩ C0|. Since

neither of these sets contains the other, and the symmetric difference of the two sets is at most three, we have

|NG(si) ∩ C0\NG(ti)| ∈ {1, 2}, |NG(ti) ∩ C0\NG(si)| = 1. (4)
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si

si si

ti

ti
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p=p(si)

p=p(si)

q1 q2

v

p=p(si)
q=p(ti) q=p(ti)

r σi ±1

v

σ1 σ2

Fig. 4. Finding a representing vertex.

For all s ∈ Si , NG(s) ∩ C0 is a subset of one of the two elements of Ei , and therefore

NG∗(�i ) ∩ C0 =
⎛
⎝⋃

s∈Si

NG(s)

⎞
⎠ ∩ C0 = (NG(si) ∪ NG(ti)) ∩ C0. (5)

Let p := p(si) be the unique element of NG(ti) ∩ C0\NG(si) (see (4)). From (5) we see that the neighbors of si and
those of ti together cover NG∗(�i ) ∩ C0, and then (4) tells us that ti misses at most two points of NG∗(�i ) ∩ C0, and si
misses one of them: p is the unique element of NG∗(�i ) ∩ C0 which is not contained in NG(si) ∩ C0, that is, (2) holds.
We still have to check that p satisfies (i) and (ii):

Comparing {p} = NG(ti) ∩ C0\NG(si) with the fact that the graph defined by Ei in (3) is a subgraph of G(C0)

(whose components are subpaths of the complement of C) we get that the (at most two) vertices of NG(si)∩C0\NG(ti)

are consecutive to p on C (Fig. 4).
Case 1: NG(si) ∩ C0\NG(ti) =: {q1, q2}. Follow the argument on the first (upper) drawing of Fig. 4. Since q1, q2

are consecutive to p on C and neither q1 nor q2 are consecutive to �i on C (they are both in NG(si)), p is not second
consecutive to �i (satisfies (i)); clearly, the three consecutive vertices q1, p, q2 have to be on the same ear, and therefore
p is not the endpoint of an ear (satisfies (ii)). We proved that si represents Si in this case.

Case 2: NG(si) ∩ C0\NG(ti) =: {q}. Follow the argument on the two lower drawings of Fig. 4. We know q = p(ti),
p = p(si), and pq ∈ E(G), and we will prove that either si or ti represents Si . Indeed, if one of p and q is neither
second consecutive to �i nor the endpoint of an ear, then we are done. Otherwise,

• either one of p, q, say q, is consecutive to a vertex r itself consecutive to �i , and p is already an endpoint of the ear
(i, i ± 1) (left drawing). Then r, q, p are the three vertices of a 3-ear attached to �i and p = p(si) satisfies both (i)
and (ii) of the definition, that is, si represents Si ;

• or both p and q are endpoints of an ear (right drawing). Since p and q are consecutive, they are then the two vertices
of a 2-ear. Since both p and q are adjacent to �i (p is adjacent to ti and q to si see the drawing) they cannot be
consecutive to �i on C, so the 2-ear is not attached to �i . We can interchange the role of p and q if necessary, so that
p(si) is the first vertex of the 2-ear, as required.

We proved the claim, since in every case we found a vertex si that represents Si .
Fix now si that represents Si (i = 1, . . . , k).

Claim 2. If i, j ∈ {1, . . . , k}, i �= j , then sisj ∈ E(G) unless all of the following hold:

• j = i ± 1 (cyclically)—that is, after renumbering, for the simplicity of the notation, i = 1, j = 2.
• The ear (1, 2) is a 1-ear. (Denote its only vertex by a1.)
• The ear (2, 3) is a 2-ear. (Denote its first vertex a2; a2 := p(s1).)
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Fig. 5. Is s1s2 an edge?

Indeed, suppose sisj /∈ E(G), and prove the three stated facts:
Let a and b be the predecessor (in the cyclic order of C) of si and sj , respectively. Since �i and �j are adjacent, they

are not consecutive on C and therefore a and b are also not consecutive on C. So ab ∈ E(G). By the choice of a and
b, we have sia /∈ E(G), sj b /∈ E(G).

Case 1: There is no 1-ear attached to �i and �j . We prove in this case that after possibly interchanging the notations,
i = 1, j = 2, the ear (1, 2) is a 3-ear and p(s1) = b (see Fig. 5 upper drawing); then we arrive at a contradiction.

Indeed, if sib, sj a ∈ E(G), then v, si, b, a, sj , v is a hole on five vertices (similarly to Fig. 3); sib /∈ E(G) means
that p(si) = b, and sj a /∈ E(G) means p(sj ) = a.

Since si, sj represent Si , Sj , respectively—by (ii) of the definition of a representing vertex—p(si) = b or p(sj ) = a

are possible only if j = i + 1 or i − 1, respectively, and the ear attached to �i and �j is a 3-ear. The cases j = i + 1
or i − 1 are symmetric, so indeed, we can suppose: i = 1, j = 2; the ear (1, 2) is a 3-ear; b = p(s1) (see Fig. 5 upper
drawing).

Let now c and d be the successor of s1 and s2, respectively. Again, cd ∈ E(G). Since d �= b=p(s1), we have d �= a,
and s1d ∈ E(G). (Indeed, d = a would mean that there is also a 1-ear attached to �1 and �2 contradicting Case 1.)
If p(s2) �= c we arrive at a contradiction again, since then v, s1, d, c, s2, v is an odd hole on five vertices (upper
drawing).

So b=p(s1) and c=p(s2). But then s1d, s2a ∈ E(G), and as before v, s1, d, a, s2, v is an odd hole unless ad /∈ E(G).
In other words, unless a and d are consecutive on C; then we have |C| = 7 (Fig. 5 drawing in the middle).

Consider now t1 ∈ S1, t2 ∈ S2; by (ii) of the definition of a representing vertex p(t1), p(t2) exist and are consecutive
to b = p(s1), c = p(s2), respectively. If r denotes the middle vertex of the 3-ear (1, 2), we get p(t1) = p(t2) = r .

If now t1t2 /∈ E(G), then v, t1, b, c, t2, v is a hole on five vertices like many times before. If on the contrary t1t2 ∈
E(G), then we get a new kind of hole on five vertices, that does not include v: r, d, t1, t2, a, r (Fig. 5 lower drawing).

We have arrived at a contradiction in all the subcases of Case 1.
Case 2: There is a 1-ear attached to �i and �j . In this case we do not arrive at a contradiction, but at the claimed

particular structure.
Suppose without loss of generality i = 1, j = 2; let a1 be the unique vertex of the 1-ear (1, 2), where a1 is at the

same time the successor of �1 (a1 = b = c); let a2 be the successor of �2 on C; a denotes the predecessor of �1, as
before (Fig. 6).

Now a2a ∈ E(G), because otherwise a2 and a are consecutive on C, and |C| = 5; we also have s2a ∈ E(G) for
otherwise a = p(s2), and since a is the endpoint of an ear, by (ii) of the definition of what ‘s2 represents S2 means’ we
have that there is also a 3-ear attached to s1 and s2: |C|�6 follows, a contradiction.

Therefore, if p(s1) �= a2, then s1a2 ∈ E(G), and v, s1, a2, a, s2, v is a hole on five vertices. So a2 = p(s1), and the
ear (2, 3) is a 2-ear by (ii) of the definition of representing vertices. Claim 2 is proved.
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Fig. 6. Fault and its correction.

If sisi+1 /∈ E(G) holds (si ∈ Si , si+1 ∈ Si+1), then we will say that (si, si+1) is a fault; Claim 2 provides then ai ,
ai+1 and we will say that (ai, ai+1) is the correction of the fault (si, si+1). We see from Claim 2 that for different
faults (si, si+1) and (sj , sj+1) (i, j = 1, . . . , k), the vertex-sets {si, ai, si+1, ai+1} and {sj , aj , sj+1, aj+1} are disjoint.
(If (i, i + 1) is a fault, (i − 1, i) and (i + 1, i + 2) are not.)

Claim 3. Let {x, y, z} ⊆ C0 ∪ {s1, . . . , sk} be a stable set. Then there exists a fault (si, si+1), (i ∈ {1, . . . , k}) so that
{x, y, z} = {si, si+1, ai} or {x, y, z} = {si, si+1, ai+1}, where (ai, ai+1)is the correction of the fault (si, si+1).

Indeed, let {x, y, z} ⊆ C0 ∪ {s1, . . . , sk} be a stable set. Since �(G(C0))��(C)�2 we have |{x, y, z} ∩ C0|�2.

We also know that {x, y, z} ∩ C0 �= ∅, because otherwise x = s1, y = s2, z = s3 and we noticed that (1, 2), (2, 3)

and (3, 1) cannot be all the three faults (faults are vertex-disjoint). Hence we have two cases:
Case 1: |{x, y, z} ∩ C0| = 2. Suppose say x = s1, y, z ∈ C0. Since yz ∈ E(G), y and z are consecutive on C, in

particular they are on the same ear. At most one of them is consecutive to �1, and at most one of them is p(s1); vertices
z′ for which neither of these hold satisfy xz′ ∈ E(G).

Hence, one of {y, z}, say y is consecutive to �1; then for the other, z = p(s1). Since y and z are consecutive we can
conclude that p(s1) is second consecutive to �1 contradicting (i) of the definition of the representing vertex s1.

Case 2: |{x, y, z} ∩ C0| = 1. Then say z ∈ C0, and (x, y) is a fault. Follow now on (Fig. 6). We can suppose without
loss of generality x = s1, y = s2.

If (a1, a2) denotes the correction of this fault, then what we have to prove is exactly z ∈ {a1, a2}.
Since a2 = p(s1) (see Claim 2, Fig. 6) the only point in C0\{a1, a2} which is non-adjacent to s1 is the predecessor a

of s1 on C. Therefore, z ∈ {a1, a2, a}.
But z = a is not possible because we show s2a ∈ E(G). Indeed, a is not consecutive to s2 on C, so s2a /∈ E(G) is

possible only if a = p(s2). But since a is the last vertex of an ear this can hold only if a is contained in a 3-ear attached
to s2 (see (ii) of the definition of representing vertices). If this were true then C would consist only of a 1-ear and a
3-ear, so |C| = 6, a contradiction that finishes Case 2 and at the same time the proof of Claim 3.

To finish the proof of the theorem note that the cyclic order of C determines a cyclic order of C0 ∪ {s1, . . . , sk}.
Since �ix ∈ E(G

∗
) implies that six ∈ E(G), C0 ∪ {s1, . . . , sk} is also an odd circuit in G. However, edges of the form

sip(si) ∈ E(G) are chords in this circuit!

If (si, si+1) is a fault and (ai, ai+1) is its correction then delete ai and si+1 and replace the subpath si, ai, si+1, ai+1
by si, ai+1 (Fig. 6). Let us call this operation the cutting off of the fault (si, si+1).

The cutting off of a fault does not change the parity of the number of edges, and since the faults are pairwise disjoint,
we can cut off all the faults independently of one another. Let us denote by C′ the (uniquely determined) circuit of G

we get at the end. We have just checked that |C′| is an odd circuit in G.
Showing �(C′)�2 will finish the proof now. Suppose

{x, y, z} ⊆ C′ ⊆ C0 ∪ {s1, . . . , sk}

is a stable set. By Claim 3 {x, y, z}={si, si+1, ai} or {x, y, z}={si, si+1, ai+1}, where (si, si+1) is a fault and (ai, ai+1)

is its correction. But this is impossible, since all faults have been cut off! �
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Fig. 7. A stable set alone cannot be shrunk, even if it is a color class.

4. Remarks, questions, variations

In [15], the strong perfect graph conjecture is deduced from the assumption that the intersection graphs of the
�-cliques of every minimal imperfect graph have a vertex of degree 2� − 2 and the challenge of deducing the strong
perfect graph conjecture from the same assumption placed on the minimal imperfect graphs themselves (rather than the
intersection graphs) is raised. Clearly, this challenge (and some more, see the introduction) is met in the present paper,
sharpening several earlier results for instance one arriving at the same conclusion when a graph has two neighboring
vertices of degree 2� − 2 [14].

One of the referees asked whether shrinking only one of the color classes in NG(v) always transforms a Berge graph
into a Berge graph. The following example shows that the answer is negative:

On the following figure a connected coloration of N(v) is indicated. The graph is perfect: {a, c}, {b, d, y}, {v, x, z}
is a 3-coloration, and any induced subgraph of it that does not contain a triangle is 2-colorable. (Otherwise it would
contain an odd hole, but any odd hole containing the vertex c avoids 4 neighbors of c and therefore it should have at
most 8 − 4 = 4 vertices; on the other hand G − c is perfect, since it is a C7 with a short chord.) However, the shrinking
of {b, d} results in a C5.

It would of course be good to weaken the condition of connected colorations, and to find the right weakening could
be decisive for a shorter proof of the SPGT, or a simpler recognition algorithm for perfect graphs. The example of
Fig. 7 shows that the operation that we are treating can surely not be decomposed into the natural smaller steps of
shrinking color classes of a connected coloration one by one in an arbitrary order.

In Theorem 1.1 little extra work is sufficient to prove that G¬v is in fact a minimal imperfect graph. Under some
tighter conditions this has been known [14] and can be inverted: the “inverse” is constructed by [1] of Boros et al.,
where for given graph H (with certain precised properties) a graph G is constructed such that H = G¬(v, f ) for some
v and f.

We do not know whether the existence of a connected coloring can be decided in polynomial time in a perfect graph.
Adaptations of our proof of Theorem 1.2 yield the following results:

Theorem 4.1 (Theorem on holes). Let k and m be positive integers. If G is a graph such that

(H) G has no induced subgraph isomorphic to a Ci with i�k or a Pj with j �m,

if v is a vertex of G, and if f is a (not necessarily connected) coloring of NG(v), then (H) is satisfied with G¬(v, f )

in place of G.
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Theorem 4.2 (Theorem on antiholes). If G is a graph such that

(A) G has no induced subgraph isomorphic to an odd antihole or to P5,

if v is a vertex of G, and if f is a (not necessarily connected) coloring of NG(v), then (A) is satisfied with G¬(v, f )

in place of G.

It is essential that the introduced operation increases the clique size of an induced subgraph if and only if the original
graph contains an odd antihole: this suggests that the operation may relate the Berge property to the chromatique
number or the clique number, and therefore to perfectness. Recently two polynomial algorithms have been found for
recognizing Berge-graphs, by [4,6,2], which are both independent of the SPGT and of its proof.
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