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The Cographic Multiflow Problem: An Epilogue

ANDRAS SEBO

ABSTRACT. We start with “cographic multiflows,” a basic special case of “ma-
troid flow problems,” exhaustively studied in Seymour’s celebrated paper,
“Matroids and multicommodity flows.” This special case is closely related to
matching theory and contains also the edge-disjoint paths problem in graphs
still planar after adding the “demand couples” as edges. M. Middendorf
and F. Pfeiffer have proved recently that this latter problem is NP-complete,
closing the cographic multiflow problem in some sense.

We first give a quick survey of the polynomially solvable special cases of
this problem, the axis of our setting being the parity of cuts: for Eulerian
graphs a theorem of Seymour establishes the sufficiency of the Cut Condi-
tion for the existence of integer flows; for non-Eulerian graphs a conjecture
of Frank and some related results use strengthenings of the Cut Condition
taking into consideration the parities of the cuts. We present a compact uni-
fied formulation of these conditions in terms of binary matroids. Through
the notions “Eulerian extension” and “routing matroids” we embed this ap-
proach in Seymour’s theory of flows in Eulerian binary matroids, motivating
new research about matroid flow problems,

These investigations crystallize into one main question interesting for its
own sake: when does the existence of a fractional flow imply the existence of
an integer one? The same question arises if we try to replace in Seymour’s
work the role of the Cut Condition by stronger constraints: the strongest
among the possible (still necessary) conditions is the existence of a fractional
flow. One can expect that stronger conditions provide good characterizations
for the existence of integer flows in more general matroids.

The greatest part of the paper deals with the above-mentioned question.
This epilogue, after Middendorf and Pfeiffer’s surprisingly negative answer
to the cographic problem, also leads to a number of new problems and con-
jectures on matroid flows.

1. Introduction

This paper can be considered an epilogue to the multicommodity flow
problem in cographic matroids, a problem rich in interesting special cases,
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and in some sense closed recently by the negative results of M. Middendorf
and F. Pfeiffer [38]. Before this problem is buried I would like to give a map
of the results and pose some questions on matroid flow problems that seem
to grow naturally out of the theory.

“Matroid” in this paper always means binary matroid; that is, representabil-
ity over GF(2) is supposed throughout. Let A/ be a matroid. The ground-set
of M will be denoted by E(M ) orsimply E. “\ ” will denote deletion and
“/” contraction.

Let RCE, r:R — N, and c: E\R — N (N is the set of positive
integers). We shall say that (M, R, r,c) is a network. Suppose % is a set
of circuits, f: % — Q" (Q" is the set of nonnegative rationals) and they
satisfy

(i) [CNRI=1 forall Ce®,
(ii) > f(C)=r(e) forallecR,
ecCe¥
(iii) > F(C)<ele) forallee E(G)\R.
ecCeF

(Think of f as a function giving the multiplicities of elements of the multiset
& . The sum of the multiplicities of the elements of a multiset will shortly
be said to be the cardinality of the multiset and will be denoted accordingly.
We shall use this terminology even if the multiplicities are nonintegers.) r(e)
is called the demand of e € R, and c(e) is the capacity of e e E(G)\R.
(Z, f) or shortly the multiset Z will be called a flow, if it satisfies (i), (ii),
and (i1i). (The notation in (ii) and (iii) can be simplified using the cardinality
of multisets.) If f is integer-valued we shall say that the flow is integer. R
is called the demand-graph and E \R the supply-graph. Determining whether
a flow exists in a given network is the matroid multicommodity flow problem.

Note that the fact of choosing the demand-edges in the matroid is already
a restriction of generality: in this way we can restrict the union of the supply
and of the demand-graph. This is the approach of Seymour [60]. Some other
models restrict only one of these, or both, but each in a different way; see
Lomonosov [32], Karzanov [24], Okamura, Seymour [41]. The problems we
shall be considering are of the first type but have analogues for these latter
models that will only be touched in the sequel.

The cographic multiflow problem is the special matroid multicommodity
flow problem where M is cographic (which of course contains the planar
disjoint paths problem). This “cographic multiflow problem” has been inves-
tigated a great deal, due also to the underlying nice combinatorial structure
and its appealing relation to matching theory. Seymour [59] discovered its
relation to the Chinese Postman Problem and used it to solve the plane mul-
ticommodity flow problem for Eulerian networks and to settle the case of two
demand-edges. We shall give a survey of some results about this problem in
Section 2.

G
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A set of edges will be called even (odd) if the sum of their demands and ca-
pacities is even (odd), and the same terminology will be used for an arbitrary
integral weight function given on the edges of a graph. A weight function
(or a matroid flow problem or its demand and capacity function) is called
Eulerian if it has only integer values and every cut is even. (The word “cut”
will also be used for matroids as a synonym of “cocircuit”; the cocircuits are
the circuits of the dual matroid.) If every circuit is even we shall use the term
bipartite instead. (Bipartite is the “dual” of Eulerian.)

After a survey of the known results, in which we shall put great emphasis
to the relation between different matroid properties (Sections 2, 3), we study
some questions growing naturally out of this theory. Our plans:

e We start with a compact common formulation of some theorems and
a conjecture of Andras Frank about the necessity and sufficiency of
a strengthening of the Cut Condition which takes into consideration
the parities of the cuts. Our formulation involves binary matroids
and is closely related to Seymour’s matroid flow properties [58]. We
are led to a general matroid property, which explains the interrela-
tion between the different problems and raises a number of questions
(Section 4).

e In Section 5 we concentrate on one of these questions that we find
fundamental, namely: when does the existence of a fractional flow
imply the existence of an integer one? Although this property does
not behave well with respect to Seymour’s “sum® operations, we work
out tools of extending characterizations, from given matroids to their
closure with respect to sums. As a result, good characterizations and
polynomial algorithms for multiflow problems can be extended to
larger classes of graphs or matroids.

These latter are the main new results of the present work. Readers who
would like to concentrate only on these can read Sections 1, 3, 5 (the odd
sections) independently of the others.

* In Section 6 we would like to make clearer the borders between NP-
completeness and polynomial solvability of multiflow problems. We
show some new polynomially solvable special cases that touch the
border of NP-completeness. The endeavor to draw a clear map gives
rise to a number of problems.

2. A survey

The cographic multicommodity flow problem is NP-complete in general
(see Middendorf, Pfeiffer [38]), and even for planar graphs, and even under
some more restrictions.

We are mainly interested in polynomiality or NP-completeness of the dif-
ferent problems and the type of good characterization they use: in the com-
binatorial content and not in small differences in complexity.
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L. Restricting the underlying graph.

e Lovasz [35] proved that in a cographic matroid a half-integer flow
exists if and only if a trivially necessary condition for the existence
of a flow, the Cut Condition (for every cut the sum of the demands is
at most the sum of the capacities) is satisfied. Seymour [59] proved
that in Eulerian networks, in addition, the Cut Condition is necessary
and sufficient for the existence of an integer flow. These papers did
not deal with algorithms. (For a quick proof of these results see Sebg
[53] or [55]. This proof immediately implies a polynomial algorithm
using weighted matching as subroutine; see [55]).

On the other hand a simple but, even from an algorithmic point of view,
crucial observation was made by Seymour [59]. To explain this observation
which connects multicommodity flows to matching theory and which will be
used several times in the sequel, we need some definitions. Let G be a graph
and let ¢: V(G) — {0, 1}, with {(V(G)) even. (If f is a function defined
on the elements of X, f(X) means 2ex f(X).) A t-join is a set of edges
F C E(G) such that dp(x)=t(x)mod2 forall x e V(G). A t-cut is a cut
d(X) such that X is t-odd: that 18, {(X) is odd. If ¢ is odd everywhere, we
Just say that &(X) is an odd cut. (0(X) denotes the set of nonloop edges with
exactly one endpoint in X, and d(X) :=|6(X)|. If we wish to emphasize
that this set of edges is considered in the graph G, we write d;(X) and
dg(X).)

Now let w: E(G) — Z™". (Z* is the set of nonnegative integers.) A w-
packing of t-cuts is a set .9 of {-cuts with a function g:.9 — Q" , which
has the property that for all e e E(G), Z(,ECE] 8(C) < wl(e). If g has
only integer values it is an integer w-packing. (Think of £ as a function
giving the multiplicities of the elements of .7 ; that is, g(C) is the number
of copies of C, even if g 1s not integer.) >rer &(T) will be called the
value of the w-packing.

The minimum weight of a 7-join will be denoted by (T, ¢, w), whereas
the maximum value of a w-packing, and of an integer w-packing, of ¢-
cuts will be denoted by v*(G, ¢, w) and v(G, t, w), respectively. If F is
a t-join and C is a #-cut, then obviously |[F N (| is odd. In particular,
IFNCl>1,and 1(G, t, w) > v*(G, ¢, w) > v(G, t, w) follows. We shall
say that (G, ¢, w) has the Seymour property if v(G,t,w)=1(G,t,w). It
is easy to prove that

there is an integer flow in (M*(G), R, r, c) if and only if
(G, t, w) has the Seymour property,

where M™(G) is the dual of the polygon matroid M(G) of G;t(x) =
dp(x)mod2 for all x e V(G), where F consists of the duals of edges
of R,and w(e):=c(e) if e ¢ E(G)\R, w(e):=r(e) if ecR.

More generally, let A be a matroid represented by the set of vectors
E C {0, 1}" (neN) that will be imagined to be the columns of a matrix
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also denoted by M. It is well known that the linear Space generated over
GF(2) by the rows of M is the set of disjoint unions of cocircuits of M .

For given ¢ = (1, ..., t,) € {0,1}", we shall call F C E a t-join if
>werV =1t mod2. (A t-join exists if and only if ¢ is in the column space
of M.) Acut C isa t-cutif Writing it as a mod2 sum of a set X of rows
of M, 2icx t; is odd. (In other words, C isa f-cut if and only if C U {t}
is a cut in the matroid A/’ represented by ¢ and the columns of A/ .) If the
set of f-joins is nonempty, it is easy to see that the parity of Z!EX {; depends
only on C and noton X.

Now (M, ¢, w), v* (M, t, w), v(M, t, w) canbe defined in exactly the
same way as for graphs and so can the Seymour property, and w and (r,c)
define each other in the same way (w(e) = r(e) if e € R, w(e) = c(e) if
e ¢ R). The same facts are true for them as well. The following trivial
relation will be used several times in the sequel:

(2.1) Suppose (M, R, r, c) satisfies the Cut Condition, There is an in-
teger (fractional) flow in (M,R,r,c) if and only if (M™,t,w) has the
Seymour property (resp. v~ (M", ¢, w)=1t(M", 1, w)).

The Chinese Postman Problem is the problem of finding a minimum -
join in a graph, and its dual is the fractional f-cut packing problem. Al-
gorithms solving the dual of the Chinese Postman Problem also solve the
multicommodity flow problem for cographic matroids through (2.1). Most
of the following results are based on this observation. (We shall only mention
the consequences to multicommodity flows.)

Barahona [1] and Korach [26] develop primal versions of Edmonds and
Johnson’s algorithm to the Chinese Postman Problem, and these can be im-
proved to find integer solutions for the Eulerian cographic problem. Korach
[26] finds an integer solution via a postoptimality method. Korach and Penn
[29] prove that a flow “almost satisfying” all the demands can be found in an
arbitrary graph. Barahona [2] finds an integer flow in a simple direct way. We
recommend this paper for a quick understanding of this Edmonds-Johnson
type approach, and for an efficient multiflow algorithm for planar graphs.

For the planar case Matsumoto, Nishizeki, and Saito [37] apply planar
matching algorithms with low worst-case complexity to find integer flows in
the Eulerian case (and hence half-integer flows in general). The best com-
plexity is obtained by Barahona [2], who builds into his primal algorithm the
efficient data-structures used in planar matching algorithms.

All the above-mentioned good characterizations can be obtained in poly-
nomial time via some “magic numbers” assigned to the vertices that seem
to contain most of the structural information about the problem (see Sebé
[52], [55]). These make it possible to find integer solutions under various

restrictions on the graph G, including all the previously known integrality
results.
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A different type of integrality result is proved by Seymour [57]): in serieg
parallel graphs the Cut Condition is necessary and sufficient for the existence
of integer flows (and actually much more is proved).

The most general theorem I know, in this direction of restricting the graph,
is the main result of A. Gerards [20], generalizing both Seymour’s Eulerian
and series-parallel cases.

IL. Restricting the number of demands. In the special case where all capac-
ities are 1, the graph multicommodity flow problem specializes of course to
the problem of finding edge-disjoint paths between a given set of pairs of
vertices. Note that even this problem is NP-complete for graphs in genera]
(Even, Itai, Shamir [12], and see Garey, Johnson [19]), but if the number
of demand-edges is fixed and all demands are 1, it is polynomially solvable
according to the celebrated papers of Robertson and Seymour [43]. The prob-
lems we are considering here are independent of this latter: we allow arbitrary
demands and capacities but we have constraints for the matroid defined on
the union of the demand and non-demand edges. Note that according to the
above-mentioned papers of Even, Itai, and Shamir. or Garey and Johnson,
even the special case of the graph multicommodity flow problem when the
number of demand-edges is 2 is NP-complete if the demands and capacities
are arbitrary.

It is implicit in Seymour [59] (see Seb6 [51]) that for the cographic mul-
tiflow problem, with 2 demand-edges, the Cut Condition together with the
following Parity Condition (P.C.) is necessary and sufficient for the existence
of an integer flow:

(P.C.) There is no odd cut contained in the union of tight cuts,

where a tight cut is one for which the Cut Condition holds with equality, and
a cut is odd if the sum of the capacities and demands in the cut is odd.

(The necessity of (P.C.) is easy to see.) For the case of 2 demand edges,
Seymour’s solution implies a polynomial algorithm as well.

For the case of 3 demand-edges, Korach [26] found a decomposition
method that reduced the problem to some number of small graphs. Ko-
rach and Newmann [28] claim that the generalization of this approach works
for 4 demand-edges, though the number of graphs to check is over 200.

Sebd [54] proves that the cographic multicommodity flow problem is poly-
nomially solvable if the number of demands is fixed.

Frank [17] generalized the 2-demand case in the following way: In a planar
graph, if the demand-edges are in two faces of the non-demand graph, then
again the Cut Condition and the Parity Condition are necessary and sufficient
for the existence of an integer multicommodity flow. (For more about the
Parity Condition, see Section 3.) The same condition has been proved to be
necessary and sufficient in networks with many tight cuts (“tense” and “half
tense” networks in Sebd [52]).
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Korach [27] proved a generalization of Frank’s result [18] to cographic
matroids in which the demand edges constitute a forest with two components
in the underlying graph.

Middendorf and Pfeiffer [38] note that a polynomial solution for the edge-
disjoint paths problem in a planar graph (that is, for the case when all de-
mands and capacities are 1) follows from a homotopic routing theorem of

All of the three previous cases would be contained in one general theorem
if the following question had a positive answer.

PROBLEM A. Is the multicommodity flow problem polynomially solvable
for cographic matroids where the demand-edges constitute a forest with a
bounded number of components?

Of course, the most interesting special case of this problem is the planar
multiflow problem where the demand-edges are contained in a fixed number
of faces of the supply graph.

3. Equivalence of Some properties

In this section we wish to show the relations among various matroid prop-
erties. Our goal is first of all didactical: we collect and then paste into one
theorem various well-known relations, and give the ideas of some simple
proofs. We aim at giving a common compact description of phenomena
known from several different papers (see for example (3.2)), first of all in
order to provide the necessary preliminaries to the following sections,

Let M be a matroid, and F C E. uy will be called F-flowing if for
any subset R C F of demand-edges, for arbitrary capacities and demands,

in integers if under the same conditions an integer flow always exists. M is
evenly F-flowing (corresponds to “F -cycling” in Seymour [60]") if for any
R C F asset of demand-edges, and an arbitrary Eulerian choice of capacities
and demands, the Cut Condition implies the existence of an integer flow.
We say that M is (evenly) fowing (in integers) if it is (evenly) F -flowing
(in integers) for every F. (Evenly) k-flowing (in integers) means (evenly)
F-flowing (in integers) for every [F|<k.

M is called packing, if vI(MT,t, w) = (M, 1, w) for arbitrary ¢ ¢
{0, 1}" and nonnegative 1 If, moreover, v(Ar*, ¢, w) = 1(M*, 1, w)
(that is, the Seymour property for the dual matroid) holds for arbitrary or
for arbitrary Eulerian w, then we say G is packing in integers or evenly
packing, respectively, ( Evenly packing is the property called “F -packing for
every F” in Seymour [60], and (3.1) is a version of (12.2) there.)

i Note the slight difference that, for later convenience (see equivalence with the F-metric
Property through polarity), we allow R to be a proper subset of F . Evenly F-flowing in our
Sense means in Seymour’s terminology R-cycling for every subset R of F. The same holds
for the relation of F-flowing in the above sense and in Seymour’s sense, Our properties might
be somewhat weaker, and hence easier (g characterize,
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(3.1) Let M be a matroid. M is (evenly) flowing (in integers) if and only
if it is (evenly) packing (in integers).

ProOF. (3.1) is an immediate consequence of (2.1), O

Clearly, flowing matroids contain evenly flowing matroids, which in turn
contain matroids flowing in integers. X 4 Shows that the latter containment
is proper. One of the consequences of Seymour’s theorem below is that the
Jormer containment is in fact equality.

Multicommodity flow problems can be considered to be circuit-packing
problems with the restriction that the circuits we pack contain exactly one
element of a given set. We can also be interested in packing arbitrary circuits,
Though this is a completely different problem, it turns out that the multicom-
modity flow problem in a matroid is strongly related to the circuit-packing
problem of the dual matroid, that is, to the cut-packing problem.

In an arbitrary matroid, any nonnegative linear combination p of (char-
acteristic vectors of) cocircuits is obviously a metric; that is, it satisfies

p(f) < p(C\{f}) for every circuit C and every f e C.

Obviously, weighting of the edges of a graph is a metric if and only if it can
be extended to a function on all pairs of vertices so that the extended function
satisfies the triangle inequality.

The matroid M has the (even) metric property if an arbitrary nonnega-
tive (bipartite) metric is a nonnegative (integer) linear combination of cuts.
(Integer combinations of cuts are necessarily bipartite.) The metric property
is the dual of the “sums of circuits property” of Seymour [60]. If for fixed
F C E an arbitrary (bipartite) metric is only required to be greater than or
equal to a nonnegative linear (integer) combination of cuts, and it is only
required to be equal to it on F, we say that M has the (even) F-metric
property. The proof of the following relation shows that flowingness and the
metric property are the same through polarity (compare with Seymour [60],
Karzanov [24], Lomonosov [34], Schrijver [49].)

(3.2) M is F-flowing if and only if it has the F-metric property.

PROOF. (We suppose that the reader is familiar with the polarity relation
of cones.) For every circuit C with ICNF|#@,and fe CNF define
Ve p(x) tobe =1 if x = f, 1if x C\{f}, and 0 otherwise. Let K
be the cone generated by all the vectors U- , and the “unit” vectors v,
(e € E\F), which are defined to be 1 on e and O on the other edges. On the
other hand, let L be the set of vectors that—if negative values are interpreted
as demands and nonnegative values as capacities—consists exactly of the
capacity and demand functions for which there exists a multicommodity
flow with demand-edges in F .

CLamM. K=1L.

In fact, L C K is obvious. K C L is clearly equivalent to the following:
for every nonnegative combination of the above given extreme rays of K
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there exists another combination, in which all Ve e » Vo .. With positive
¢ 113 S22RD
coefficients satisfy e, ¢ C, and ¢, ¢ C, . For then, setting

R :={e: there exists Ve . With positive coefficient} C F |

CNR={f} holds if Ve, has positive coefficient.

If Ue, e and Uc,,e, aT€ DOt 50, let us say they are a “bad pair.” We
shall define a new combination that decreases the number of “bad pairs.”
Consider a bad pair and let A be the minimum of their two coefficients. If
both ¢, € C, and e, € C,, simply decrease both coefficients by A and add
the right number of unit vectors. Suppose now without loss of generality
that e, € C, and e, € C;. Let C := C,AC,. Decrease both of the
coeflicients of Ve, e, and Ve, e, by A and add Ue e, with coefficient 4 and
the right number of unit vectors. It is €asy to see that the result of the linear
combination remains the same and the number of bad pairs decreases. Thus
the claim is proved.

Now denote the polar of a cone Q by Q°. “M is F -flowing” means
exactly that L = N* where N is the cone generated by the set of (character-
istic vectors of) cuts and the vectors Y, e € E\F. On the other hand, it is
easy to see that “M has the F-metric property” means exactly that N = K*
Since K = L by the claim and Q™" = @ for any cone, L = N” is equivalent
to N=K". O

Lomonosov [32], [34] and Karzanov [24] (see also Schrijver [49]) prove
that for graphs with special R both properties can be strengthened.

KARZANOV’S AND LOMONOSOV’s THEOREMS. Let G be a graph and F C
E(G). If F is the circuit on five vertices, or the complete graph on four vertices
or it s the function of two stars, M (G) is evenly F-flowing (Lomonosov) and
has the even metric property (Karzanov).

The authors show that the constraints on F cannot be weakened. Pa-
pernov (1976) proved earlier that F -flowingness holds for exactly the same

The well-known theorem of Okamura-Seymour [41] and Okamura’s gener-
alization [40] can also be formulated as stating “even F-flowingness” of some
matroids for some F . Schrijver [47] proves the even F-metric property in
Okamura’s case. Okamura’s and Schrijver’s theorems constitute another pair
related to each other in the same way as Karzanov’s and Lomonosov’s abave
theorems.

Finally we mention Seymour’s main lemma [60, Section 7] to prove ex-
cluded minor characterizations of these properties. For the definition of
k-sums (k=1, 2, 3), and related notions and facts, see Appendix II.

(3.3) If two matroids are (evenly) flowing (or flowing in integers), then so
IS their k-sum tk=1.2,3).

To prove the excluded minor characterizations Seymour [60] uses decom-
Position results based on Seymour [58] asserting that matroids without
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in which case we define the Eulerian extension to be equal to the original
network; R:=RU{d}; 7(d) := 1, and otherwise (for e #d) 7 and 7 are
defined to be the same as » and c. The Eulerian extension of the matroid
we get from M by replacing every element e € £ by r(e) or c(e) parallel
copies is the matroid we get similarly from A7 .

The following simple but important fact shows that we do not really restrict
generality when we assume that our network is Eulerian.

(4.1) In a network there exists an integer flow if and only if there exists
one in its Eulerian extension.

PrROOF. The if part is obvious. To prove the only if part note that an
integer sum of circuits is an Eulerian function on E. After subtracting such
a function from the capacities and demands, we get a new function such that
the columns with odd function values and d form a cycle. O

A necessary condition for the existence of an integer flow is the existence of
a fractional flow in the Eulerian extension. This turns out to be much stronger
than the Cut Condition, and even than the existence of a fractional flow, as
the example of K 4 already shows. (With two matching edges as demand-set
and all capacities and demands equal to 1, the Eulerian extension of X 4 18
the Fano matroid F, with three demand-edges forming a cycle. It is easy
to see that for any demand and capacity function on K 4 » the existence of a
fractional flow in the Eulerian extension is sufficient for the existence of an
integer flow. This also follows from the “routingness” of F, , see Appendix

III.) The existence of a fractional flow in the Eulerian extension is strictly
related to (F.C.).

(4.2) Ifthere exists a fractional flow in the Eulerian extension of a network,
then (F.C.) also holds. For matroids that are both flowing and coflowing (with
arbitrary set of demand-edges, capacities, and demands), the existence of a
Jractional flow in the Eulerian extension is equivalent to (F.C.).

PrOOF. Let (M, R, r, ¢) be a network, fix a binary representation of the
matroid M, and let ¢ be the sum of the vectors corresponding to odd » or

¢ values. We get a representation of the Eulerian extension if we add ¢ to
the representation of M .

First observe that (F.C.) is equivalent to the following: for every vector w
which is the sum of cuts,

(%) v (M, t,w)+ Zw(e}r(e) < Z w(e)c(e).

ecR e€E\R

Let W(t) :=t(M, t, w) and Wie) =w(e) if e € E(M). W is a metric
on M. For w isametricon M, since it is a sum-of-cuts vector; and clearly

(M, 1, w) = min{w(C\t): C is a cycle of M,te C}.
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If there is a fractional flow in the Eulerian extension (7, R, 7, c), then
the Distance Criterion holds in particular for 7 :

(%) 2 TEFe) < Y we)e(e).

eER e€E(MN\R
This is the same as (*) with the only exception that v* (M, ¢, w) is replaced
by ©(M, ¢, w). Since v*(M, ¢, W) <T(M,t, w), (++) implies (%) .

Now we prove the converse implication for the matroid M which is both
flowing and coflowing. Since Af is flowing, by (3.2) it has the metric prop-
erty, which means that the metrics defined on it are exactly the sum-of-cuts
vectors. Since M is coflowing, then by the same theorem, M is packing,
that is, v (M, ¢, w) =M, t,w). Thus, supposing that (*) holds for

an arbitrary sum-of-cuts vector w on M, we get that (#+) holds for an
arbitrary metric @ on 7. [

Hence, the following problem c

ontains the characterization of flowing and
coflowing matroids (

€.8., planar graphs) for which Frank’s conjecture is true,

defined networlk.

We can neither prove nor disprove that “
satisfy this property:

CONJECTURE C. Let G be a planar graph. For an arbitrary set of demand
edges, demands, and capacities such that there are at most two vertices with
an odd sum of capacities and demands, the defined network has an integer
flow if and only if its Eulerian extension has a flow.

Middendorf and Pfeiffer [39]
natural strengthenings of this ¢
tion;

Let G be an Eulerign graph, R C E(G)

Jor some e e R . Then, if there exists q Jractional packing of paths in G — R
between the endpoints of the edges in R, then there also exists an integer
packing of paths (that is, edge-disjoint paths).

II. Metrics. (4.2) shows that Frank’s condition, although it is made typi-
cally to strengthen the Cut Condition for integer flows in non
Works, is equivalent to the property «

almost” Eulerian planar graphs

have constructed counterexamples to various
onjecture. A trivially equivalent reformula-

, and suppose that G—e s planar

-Eulerian net-
if there exists a flow then there exists an
integer flow” of some Eulerian networks. Also, (4.1) permits us to reduce the
existence of integer flows to Eulerian networks. Thus the study of Eulerian
networks is not really g restriction of generality.

The property “if there is a flow for Eulerian data, then there is an integer
flow” is a generalization of even flowingness. It is maybe the most general
among matroid properties for which “nice” good characterizations hold. In-
deed, the existence of fractional flows is well characterized (provided “min-
in the underlying matroid, see

imum path problems” can be solved
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Section 6):

(4.3) There exists a flow in the network (M, R, r,c) if and only if the
Distance Criterion holds.

The Distance Criterion is a well-known necessary and sufficient condition
for the existence of fractional multicommodity flows in graphs, claimed by
the “Japanese Theorem” of Iri [23] and Onaga, Kakusho [42]. Here it is for
matroids:

DISTANCE CRITERION. For every metric q,

d_dlere) < Y gle)e(e).
eER e€E\R

The proof of (4.3) is easy: write the existence of a multiflow as the feasi-
bility problem of a linear program, and apply Farkas’ lemma. The result of
this is (4.3) with the slight lack that ¢ 1is not necessarily a metric. (What we
got until now is Seymour [60, (4.4)].) Note now that replacing g(e) for every
edge e by min{g(e), q(C\{e})}, where C is the cycle for which q(C\{e})
is minimum, we get a metric, and the difference between the right- and left-
hand sides of the Distance Criterion has not increased.

(4.3) suggests the idea of studying the necessity and sufficiency of the Dis-
tance Criterion for the existence of a flow or for the existence of an integer
flow in an Eulerian network, requiring the Distance Criterion for all or for a
subset of metrics. (Even) flowingness (in integers) can be defined with respect
to an arbitrary class of metrics: replace in the definitions the Cut Condition
by the Distance Criterion restricted to the given class of metrics.

For example, in the previous section we studied these properties with re-
spect to the “cut metrics.” (The function which is 1 on a cut and 0 otherwise
is clearly a metric.) Seymour [60, (4.5)] proves that the notion of (even)
flowingness does not change if we replace the Cut Condition by the Distance
Criterion restricted to arbitrary (0, 1)-metrics. Schwirzler and Sebd [50]
characterize (even) flowingness with respect to (0, 1, 2)-metrics.

PrROBLEM D. What is the class of matroids for which the Distance Crite-
rion, maybe restricted to a subclass of metrics, is necessary and sufficient for
the existence of an (integer) flow for every set of demand-edges and (Eule-
rian) demands and capacities?

Cut metrics are the most special, and the set of all metrics is the most
general class of metrics we can be interested in. (The former fact is justified
by noting that cuts are always extreme rays of the cone of all metrics; the
latter by the Distance Criterion.) We shall see below that flowingness in
integers cannot be really generalized, but the following section tries to show
that evenly flowing matroids with respect to the set of all metrics (routing
matroids) constitute a rich class.

From now on we are dealing only with the set of all metrics, that is, with the
Distance Criterion as it is: this is equivalent to replacing the Cut Condition by
the existence of a fractional flow. For a study of other metrics see Schwirzler
and Sebé. [50].
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Flowingness in integers with respect to more general metrics than the cut
condition does not give anything new:

(4.4) A matroid has the property that for every set of demand-edges, integer
capacity, and demand functions, the existence of a fractional flow implies the
existence of an integer flow if and only if it has no K 4 minor.

PROOF. It is easy to see that if a matroid has the above-mentioned prop-
erty, then all its minors also have it (in the same way as in the proof of (5.1)
below). Thus the only if part follows. (If R consists of a perfect matching
of K, there exists a half-integer flow but there is no integer one.) On the
other hand, if M has no K, minor, it is flowing in integers by Seymour [58,
(8.1)]. Consequently, if there exists a fractional flow for an integer demand
and capacity function, then the Cut Condition is satisfied, and thus there
exists an integer flow as well. [

This also means that matroids flowing in integers with respect to any class
of metrics (containing cut metrics) are the same,

III. F-Routing matroids. We think (4.4) also holds for F-flowingness in
integers:

CoNJECTURE E. Let M be a matroid and F C E. For a network in M
with demand-set F and every integer capacity and demand function, the
existence of a fractional flow implies the existence of an integer flow if and
only if M is F-flowing in integers.

Some results and conjectures in Seymour [60] suggest that the characteriza-
tion of the matroids that are F-flowing in integers is probably difficult. The
above conjecture could be easier though. We actually think that the following
somewhat stronger statement is also true:

If all the proper minors M' of M are F NE(M')-flowing in integers, then
M s F-flowing. (To prove Conjecture E above from this, assume this is
true and let M be a minimal counterexample to (the nontrivial part of) the
conjecture: for an arbitrary integer choice of demands and capacities in A
for which there exists a fractional flow there also exists an integer flow; M
Is not F -flowing in integers, but a// its proper minors are. By the assumed
claim A is F-flowing. Since it is not F-flowing in integers, there exist
integer demands and capacities for which the Cut Condition holds but there
Is no integer flow. Since M is F-flowing, there exists g Jractional flow in the
Same network, in contradiction to the choice of A1)

I do not actually know about any counterexample to the statement we
get by replacing in Conjecture E “M is F-flowing” by “M is evenly F-
flowing”; see Conjecture G (a) below. What about other analogous statements
about other matroid flow properties? (Such statements would imply other
€quivalences and implications between various properties. )

In the case of |R| <2 some obviously necessary conditions are also
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sufficient because of Seymour [60, (9.5) and (11.1)]:

If |FI<2, M is F-flowing in integers if and only if it has neither an £
minor containing at least one element of F nor a K, minor containing twe
elements of F forming a matching.

Using this, Conjecture E for |F| < 2 can be proved in the same way as
(4.4).

If |F| > 3 the characterization of matroids F-flowing in integers is not
known.

Let M be amatroid,and F C E. M will be called F-routing if for every
subset R C F of demand-edges, and for every Eulerian choice of demands
and capacities, the existence of a fractional flow implies the existence of an
integer flow. M is routing if it is F-routing for every FCR,

Evenly flowing matroids are obviously routing, because a fractional flow
implies the Cut Condition. On the other hand, the minimal matroids that
are not evenly flowing—that is, the minimal nonflowing matroids Ky 8
R ,—are all routing as well (see Appendix I11).

Call a matroid k-routing (k > 0) if it is F-routing under the condition
|F| < k. We saw that (4.4) remains true with the restriction |F| <2. How-
ever, already the characterization of 1-routing matroids seems to be difiicult:
denote the Eulerian extension of the Petersen graph by P,. P isnot F-
routing, where F = {d}: r(d) = 3 and c(e) = 1 if e # d is an Eulerian
weighting; putting % as multiplicity on the circuits F U{d}y (i=1,...456
of P, where the F;’s are the six different perfect matchings of the Petersen
graph, we get a fractional flow; yet there is no integer flow, because it would
give a factorization of the Petersen graph.

Werner Schwirzler noted that some “lifts” (see Seymour [60] of minimal
nonrouting matroids are also not I-routing, a consequence of (10.1) in Sey-
mour’s paper.

ProOBLEM F. Find the minimal non-1-routing minors of P, and also of
the non-1-routing “lifts” of the bi-nonflowing matroids, defined in the next
section.

A wide class of F-routing matroids is provided by the following theorem:

KARZANOV’s THEOREM [25]. Let G be an arbitrary graph and F the edge-
set of a subgraph on at most five vertices. Then G is F -routing.

We think (4.4) and the remarks we made afterwards can be refined in the
following way. Part (a) of the following conjecture easily implies Conjecture
E above (a fact proved in a remark in parentheses after Conjecture E).

CoNJECTURE G. Let M be a matroid, and F C E .

(a) If all proper minors M\X/Y of M are F\ X-flowing in integers, where
X,YCE and YN(FUX)=@, then M is evenly F-flowing.

(b) If all proper minors M\X/Y of M are evenly F\X-flowing, then M
is F-routing.
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If we delete “F-” in Conjecture G we
K, , the minimal matroid nonflowing in i
similarly, according to Appendix
routing,

get a statement that is easy to settle:
ntegers, is evenly flowing (see (4.4));
II1, the minimal nonflowing matroids are

5. Routing matroids

Let us recall that a matroid is routin
demands for which there exists a fracti
one. We try to work out here some
some first application of these tools

We have some exam

g if for any Eulerian capacities and
onal flow there also exists an integer
tools to study routing matroids and show
ples of routing matroids: evenly flowing matroids are
clearly routing, and so are the minimal nonflowing matroids K;, F

Ry, according to Appendix I1I. In this section we shall prove the routingness
of a minor-closed class containing all these.

Note that according to Wagner’s conjecture recently proved by Robertson
and Seymour [45], (5. 1) implies that routing graphs can be characterized by q

(5.1) Ifa matroid is routing, then all its minors are also routing.

PROOF. We have to prove that contracting or deleting an element ¢ of
a routing matroid M, the matroid M, we get is also routing. Suppose
(M,, R, r,c) is an Eulerian network, and (%, f) is a flow in it.

e If e was deleted, then define ¢(e) := 0. (M,R,r,c) is Eulerian,
(€, f) isaflowin it (an edge-set in M, can also be considered to be
an edge-set in ). Hence, since M is routing, there exists an integer
flowin (M, R, r, c¢) which is also an integer flow in (M, . R, ¥,

e If ¢ was contracted, then for every cut C of M containing e,
F(CNF)\{e}) + c((C\F)\{e}) has the same parity. Define c(e) to
have this same parity, and to be “big enough” (for example the sum
of all demands is enough). From a fractional flow in (M,R,r, c)
we easily get one in (M,, R, r,c), and then from an integer flow
in (M., R, F,e), using that the capacity of e is big, we get one in
(M,R,r,c). O

We were somewhat informal, because there is no essential difference be-
tween this proof and similar proofs in Seymour [58]. Nevertheless, the fol-

lowing “skew decomposition lemma” into 2- and 3-sums together with (5.3)
seéems to be a new feature of routing matroids:

(5.2 Iy M, and M, are routing matroids, then their 1
If M, is furthermore evenly flowing, then their 2- and 3

-Sum is also routing.
-Sums are also routing.
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Proor. The claim about 1-sums is clear,

Let M be the 2-sum of the routing matroid M, and the evenly flowing
matroid M, , let E(M )N E(M,) = {d}, and let (M, R,r,c) be an Eu-
lerian network for which there exists a flow, given by the multiset & (with
maybe fractional multiplicities). We show that there exists an integer flow
for (M,R,r,c).

Define R;, r;, ¢, (i =1, 2) as follows. r.(e):=r(e) for e € (EN{d})NR,
and c,(e) :=c(e) for e € (E\{d})\R . We still have to decide about 4 . Let

g == max{r((C\{d})nR) — c((C\{d})\R): C is a cocircuit in M,,deC}.

Furthermore, let R, = (RNE,)u{d} if ¢ <0, and otherwise R, := RNE,;
let R, :=(R NE)u{d} if g >0, otherwise R, = RNE,. Define r(d) or
¢;,(d) (depending on whether d & R, or not) to be equal to lq].

It can be seen immediately from the definition that (M,, R,, Yyy C5) 18
Eulerian, and it satisfies the Cut Condition. Hence there exists an integer
flow %, in this network.

Our following step is to prove that there exists an integer flow %, in
(M Ry omy ¢;) as well. Since this network is clearly also Eulerian, it is
enough to prove that it has a fractional flow.

Let F=4C c & CNE, #@,CNE, # @}, and suppose Z is such
that (| is minimum. Then the demand-edge of every D € & is in E ,or
all of them are in E, , because if D, € Z haditin E. (i=1, 2), then there
exists a circuit in each of (E,ND)AE, N D,) and (E,n D,)A(E,N D)
which could replace D, and D, in the flow %, thus decreasing |Z|. (It is
easy to see from the definition of a 2-sum that these edge-sets are cycles of
M, and M, respectively, and each of them contains exactly one demand-
edge.) r?”]’ ={Ce?%:CcC E}U{(D\E,)u{d}: D € Z} is a flow in
(M, R, r, ¢,): the capacities and demands of the edges in E \{d} are
obviously respected by % because they are respected by % ; in order to
check that the capacity or demand of 4 is also respected, consider the cut
Q of M, for which the maximum is reached in the definition of ¢ . Clearly,
if ¢ > 0, then at least ¢ circuits of # that have their demand-edge in Q
must also intersect E,, and these are exactly the circuits in & ; similarly,
if ¢ < 0, then at most —q circuits of & intersect (Q\{d})\R without
intersecting (Q\{d})N R, and & is a subset of these.

It follows now that %' is a flow in (M, R, r ,c), and hence there
exists an integer flow %, in this same network.

Finally note that the integer flows % and ’zt??z can be combined to give
an integer flow of (M, R, r, ¢): first, put in all circuits of both flows which
do not contain d. Then observe that according to the definition of a flow,
in & U %, there are at least as many circuits which contain ¢ as demand-
edge as circuits containing it as supply-edge; all circuits of the former kind
are in M, , and all of the latter kind are in Mj. (1 # j€{l,2}). Delete
some circuits of the former kind to have equality here. It is possible now to
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partition the multiset of circuits of & U &, containing d into pairs of the
form {C,, C,} where C e % (i=1,2). Second, for each DiE 45, 6o,
put into the flow C|AC,. It is easy to see that we have defined a flow in
(M, R,r,c), and the statement concerning the 2-sum is proved.

We omit the proof concerning 3-sums, because it is quite complicated, and
we will not need it in this paper. Let us note, however, that it can be easily
worked out from the synthesis of the proof of Seymour [60, ( 7.3)] and the
proof above. O

Clearly, the same proof works to prove that M is F-routing, if M, is
(F N E|) U {e}-routing and M, is evenly (Fn E,) U {e}-flowing, where e
is the marker, and we can simply write F N E; here, if Fn Ej = (i #
J € {1, 2}). This implies easily that if both matroids are k-routing and there
exist numbers k; > 0 (i = 1, 2) such that k, + k, > k and M, is evenly
ki-flowing (i=1,2), then M is k-routing.

(5.2) is sharp: for 2- and 3-sums (5.2) cannot be sharpened by writing
“routing” instead of “evenly flowing.” In a conversation, Paul Seymour sug-
gested that even something like “the 2-sum of two not evenly flowing matroids
IS not routing” may hold. This is “almost” true; we only have to suppose that
the common element of the two matroids is contained in a minimal nonflowing
matroid in both of them, as the following statement shows:

(5.3) If M, and M, are minimal nonflowing then their 2-sum is minimal
HORFOULIng. 2

PrOOF. Let R, be a set of demand-edges in M, for which the Cut Con-
dition is satisfied with all demands and capacities equal to 1, but for which
there exists no flow (i = 1, 2). For all the three minimal not evenly flow-
ing matroids there exists such a demand-set, and all of them are Eulerian.
Take the 2-sum M of M, and M, with d € R, NR, as marker, and define
R:= (R, UR,)\{d}. Let all demands and capacities be equal to 1. Since both
M, and M, are Eulerian, so is M. There exists a fractional flow in the de-
Jfined network, because M\d is flowing, and with R := R \d as demand-set,
it satisfies the Cut Condition li=1,32).

We show now that there is no integer flow in the defined network. Such
an integer flow would contain an integer flow either of M \d with demands
R \{d} orof M,\{d} with R,\{d}. But M\{d} with demand-set R\{d}
does not have an integer flow either for i = | or for i = 2: if it had,
then by (4.1), its Eulerian extension, which is just M, with demands R,
would also have an integer flow, in contradiction to the definition of M . and
R, (i=1, 2). The statement about the proper minors is an immediate con-

i Right before the final submission of this paper we observed that the proof of this lemma
works in a more general setting, providing more 2-separable minimal nonrouting matroids. For
example, the 2-sum of H and K5 is nonrouting, where Hg is the matroid we get from H,
by adding a parallel copy of the edge ¢ for which H¢/e = K , and defining the marker to be
this parallel copy. Similar statements hold for the 2-sum of two copies of Fﬁ !
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sequence of (5.2) using the routingness of the minimal nonflowing matroids;
see Appendix III. 0O

Since a 2-sum is a special 3-sum (replacing the common edge of the two
matroids by a triangle), the 3-sum of routing matroids is not necessarily
routing. One could just conclude that “sums” are no more the right tool. It
turns out, however, that the way of using the decomposition operations has
to be changed instead: although routingness cannot be “summed,” it can be
“characterized among sums.” The main purpose of this section is to show
how. The answer lies in (5.2) and (5.3).

According to (5.3) all the six nonisomorphic 2-sums of the three minimal
nonflowing matroids are minimal nonrouting. These six matroids will be
called bi-nonflowing. We shall refer to them with the notation B, ;» Where
i and j are the indices of the two members of the 2-sum (for example,
Bs |, is the 2-sum of K and R,)). We conclude that all six bi-nonflowing
matroids are minimal Honrouting.

Note that all the minimal nonflowing matroids are evenly 2-flowing (Sey-
mour [60]) and thus, by the remark after the proof of (5.2), the bi-nonflowing
matroids are 3-routing. Lomonosov [34] constructed a (quite complicated)
example for a not 3-routing graph.

PROBLEM H. Give other examples of minimal not 3-routing matroids.

Note also that the only graphic matroid among the bi-nonflowing ones is
1‘3’5,5 » Which is isomorphic to an important example in Middendorf and Pfeif-
fer [38]: it can serve as a basis for constructing other graphic counterexamples
with little modification.

It might be useful to add that B; 5 has three nonisomorphic choices of
demand-edges for which there exists a flow but there is no integer flow, ac-
cording to a choice between two nonisomorphic possibilities for d in the
proof of (5.3).

Our goal now is to understand the relation between the unique “Cunning-
ham-Edmonds decomposition” of a matroid into 2-sums and its routingness.
Although Cunningham and Edmonds’ uniqueness result [7] is not explicitly
used in the presentation below, it is present behind most of the facts (see
remarks also in Appendix II).

When taking the 2-sum of two routing matroids, we would like to use
either (5.2) to prove that their 2-sum is also routing, or to find a bi-noncycling
matroid, which is minimal nonrouting by (5.3). This will be possible due to
the following fact:

(5.4) (a) Suppose M 1 » M, are connected matroids, let M be their 2-sum,
and let N be an arbitrary matroid. If every element of E(M 1) is contained
in an N-minor, then so is every element of E(M) .

(b) Suppose that the connected matroid M can be decomposed into the
matroids M,, ..., M « by repeated 2-decompositions. Then the 2-sum of M £
and M, (p # q) is a minor of M .
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PROOF. We first prove (a). Let e € E(M) be arbitrary. If e € E(M,) we
have the statement by assumption. If ¢ € E(M,) let C be a circuit of M,
containing both e and the marker d, and let M, /X\Y be isomorphic to N
and contain d. Clearly, M/(X U (C\{e})\(Y U E(M,)\C) is isomorphic to
N and contains e, proving (a).

To prove (b) note the following:

Cram. If the matroid N occurs as a member of a 2-sum in a repeated
2-decomposition of M, then every e € E(M) is contained in an N-minor,

Indeed, if M, = N, then the condition of (a) is trivially satisfied (ev-
ery element of N is contained in an N-minor), and applying (a) to all the
successive 2-sums we get the statement for M.

We proceed now by induction. By assumption, M can be decomposed
into L, and L, , which can be further decomposed into M, (i e I,) and
M, (i € I,) respectively, where Inl,=9, LUL ={l,..,k.TIf p
and ¢ are both contained in I, , or both are contained in I, , we are done
by induction. If not, suppose pel, qel,, say. Let the marker of the
2-sum of L, and L, be d. According to the claim, d is contained in both
an Mp-minor of L, and an Mq—minor of L. O

We now apply our lemmas to prove that the bi-nonflowing matroids are
the only minimal nonrouting minors in the “closure” of the class of flowing
and minimal nonflowing matroids:

(5.5) THEOREM. Suppose that .# is the minimal class of matroids that
contains all the flowing matroids, and each of the minimal nonflowing ma-
troids K, F,, R, and for which M 1» My € 4 implies M € # , where
M is a 1- or 2-sum of M, and M, with an arbitrary marker. Then M e #
is routing if and only if it does not contain any of the bi-nonflowing matroids
as minors.

PROOF. The “only if” part is an immediate consequence of (5.3) and (5.1).

Now let M . .# . Decompose M first into the 1-sum of 2-connected ma-
troids (connected components); then further decompose these until arriving
at a list of 3-connected matroids. By assumption these 3-connected matroids
are either flowing or isomorphic to one of the minimal nonflowing matroids
7 - K., R, . If the list we get from a connected component contains at least
two minimal nonflowing matroids, then by (5.4), M hasa bi-nonflowing mi-
nor. Since M does not have bi-nonflowing minors by assumption, among the
3-connected matroids arising from repeated 2-decompositions of a connected
component of M , there is at most one which is not flowing. Even this one is
routing (since it is isomorphic to F, or R, or K;). Applying the second
part of (5.2) we get first that each connected component of M is routing, and
then, taking the 1-sums of these, by the first part of (5.2), M is routing. .

: (5.4) describes the trivial behavior of Seymour’s “roundedness” property [55] with respect
to 2-sums. Using Seymour’s theorem about “rounded matroids” the way we applied (5.3) can
be generalized: for graphs say, either (5.2) can be applied to M, and M, , or both matroids
contain a K minor implying that the marker is contained in both in a Ks or H, minor. But
by the previous footnote, the 2-sum of a K and ﬁﬁ arising in this way, or of two copies of
any of these, are minimal nonrouting matroids.
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CoROLLARY. Suppose M is a matroid without AG(2, 3), Sy, and H,
minors. M is routing if and only if it does not contain any of the bi-nonflowing
matroids as minors,

ProoF. The class .# of matroids defined in Theorem 5.5 is exactly the
class of matroids without AG(2, 3), Sy, and H, minors, because of Sey-
mour’s Splitter Theorem (see Corollaries of the Splitter Theorem in Appendix
II). o

Thus routingness is characterized above for a class of matroids closed
under minor containment and containing both the evenly flowing matroids
and the minimal nonflowing ones.

(5.2) and (5.3) explain the behavior of routingness with respect to 2-
separation. For a characterization of routingness, though, we would first
of all need more 3-connected minimal nonrouting matroids. The only one
we know is actually P\ or some minor of it. M. Middendorf and F. Pfeif-
fer [39] have recently found a new example: they observed that K, is not
routing; it is easy to see that K, does not have any 2-separable nonrouting
minor (use (5.2) to prove this).

PROBLEM 1. Find 3-connected minimal nonrouting matroids.

Another application of (5.2): the generalization of Lomonosov’s theorem
for arbitrary regular matroids, or even to matroids without AG(2, 3) and
Sy minors, or even. .. . (It is possible to continue with the splitter theorem:
use the version of (5.2) concerning F-routingness, mentioned after (5.2).)
The proof of this generalization is similar to the proof of (5.5): luckily, in
the 2-decomposition, at least one of M, and M, will be evenly flowing
with the demand-edges it contains, because of the first (Lomonosov’s) part
of “Karzanov and Lomonosov’s Theorem,” Section 3.

The additional assumptions we made can be generalized by further apply-
ing Seymour’s “Splitter Theorem”, but Conjecture I seems to be difficult. It
might be related both to the cycle cover conjectures of Seymour (for exam-
ple, [60]) and Tutte’s and Lovasz’s conjectures about partitioning the edges
of a graph into perfect matchings (that imply the four-color conjecture for
planar graphs). The following problem may lead to a common generalization
of these two conjectures as well as to a special case easier to handle: we are
interested in flows that leave us (after deleting the circuits of the flow) with
weights that satisfy the sums-of-circuits property.

PROBLEM J. Call a matroid M strongly routing if for arbitrary F C E and
Eulerian weighting w of E . if w is a nonnegative combination of circuits
C with |[CNF| <1, then it is also the nonnegative integer combination of
circuits with this property. Characterize strongly routing matroids in terms
of excluded minors.

The existence of a fractional solution to this problem can be characterized
with linear programming, and the result obtained in this way can be somewhat
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sharpened analogously to the Japanese theorem. Most questions asked for
ordinary flow problems have their analogues for the set of circuits figuring in
Problem J.

6. Complexity

(Evenly) flowing matroids were characterized by Seymour [60] (see Section
3), and in Section 2 we studied the more general concept of routing matroids.
The most general question in this series is probably the following:

PROBLEM K. What are the classes of matroids closed under minor contain-
ment, for which the integer multicommodity flow problem is polynomially
solvable? What are those classes for which it is polynomially solvable for
arbitrary Eulerian weighting, or for an arbitrary choice of a fixed number of
demand-edges?

Note that e.g. even solvability is more general than routingness, provided
the Distance Criterion can be checked in polynomial time. This is the case
if and only if shortest paths (minimum weight circuits containing a given
element) can be found in polynomial time in the matroid. The complexity
of a multiflow problem is thus strictly related to the complexity of shortest
path algorithms:

PROBLEM L. Find a connection between “shortest path oracles” of the ma-
troid, of its dual, matroid flow properties (for example, routingness) and the
solvability of multicommodity flow problems. For example, are all routing
matroids evenly solvable?

We shall say that a class of matroids closed under minor containment is
solvable if the integer flow problem can be solved in polynomial time for an
arbitrary set of demand-edges, demands, and capacities. We shall say it is
finitely solvable if we require polynomial solvability only for instances with
a prefixed number of demand-edges, and evenly solvable if we restrict the
demand and capacity function to define an Eulerian network.

It is not difficult to give examples of such classes: compositions of solvable
classes are solvable, because the decomposition itself can be carried out in
polynomial time according to Bixby, Cunningham [4] or Cunningham, Ed-
monds [7]. For example, using Seymour’s [60] decomposition results (6.5),
(6.7), (6.10), it is casy to see that evenly flowing matroids are also evenly
solvable, and finite solvability of cographic matroids (see below) implies in
the same way that flowing matroids are also finitely solvable. Similarly, ma-
troids without AG(2, 3), &, and Hg minors are evenly (and also finitely)
solvable (use the decomposition given by Appendix II, second corollary).

Furthermore, given a routing matroid composed with the method of Sec-
tion 5 with Eulerian capacities and demands, the proofs provide us an al-
gorithm to find an integer flow, or a metric proving the nonexistence of a
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fractional flow. More precisely:

(6.1) THEOREM. There exists a polynomial algorithm which starts with
the Eulerian network (M,R,r,c) as input, where M is a matroid without
AG(2, 3), Sg ., and Hg minors, and stops with one of the following outputs:

(1) an integer flow in this network;
(ii) a metric proving that no fractional flow exists;
(ii1) a bi-nonflowing minor of M proving that the matroid is not routing.

This theorem is a clear consequence of the proof of (5.5)
made above in this section.

We saw how to produce a growing sequence of solvable classes of matroids,
But is it possible to find the exact border of NP-hardness and polynomiality?
Can the solvable classes be characterized?

PROBLEM M. What is the complexity of the problem of deciding whether
for given matroids (as input) the class of matroids not containing these as
minors is (simply or finitely or evenly) solvable?

Note that Problem M may also be undecidable (a warning of Osamu Wat-
tanabe, Tokyo Institute of Technology). However, a first result related to
this problem is an observation of Middendorf and Pfeiffer [38]: their NP-
completeness results and Robertson and Seymour’s algorithm [43] imply a
complete characterization of minor closed classes of matroids for which the
“disjoint paths problem” (the integer multiflow problem with all capacities
and demands equal to 1) is solvable in polynomial time,

In the following we shall first sketch a proof of the fact that cographic flow
problems are finitely solvable. (For the details see Sebg [54]. Our goal is just
to say enough for the problems we would like to state.) If P # NP they are
not solvable, because of the result of Middendorf and Pfeiffer [38]. Then we
would like to ask some related questions and make so
the complexity of multicommodity flow problems.

Let us formulate now the finite solvability problem more precisely:

Suppose & is a positive integer and define the integral planar k-commodity

JSlow problem to be a matroid flow where the matroid is restricted to be both
graphic and cographic and the number of demand-edges to be at most k.
Recall now the connection of multicommodity flow problems and the Chi-
nese Postman Problem (see (2.1)). Let G be a planar graph. Note that
[R] < k implies tV(G)) < 2k in the corresponding #-join- f-cut optimiza-
tion problem, and thus

and remarks

me general remarks on

(6.2) Ifthe t-cur packing problem with bounded 1(V (G)) can be solved in
polynomial time, then graphic matroids are Jinitely solvable.

Let us recall a well-known fact about packings of z-cuts in graphs: for any

w-packing of t-cuts there exists another w-packing of t-cuts that is laminar,
and whose value is equal to the value of the original packing. (A family of
sets 1s called /aminar if for any two X, X, of its elements, Xy € X, or
X, C X, or &y I Xy, =@, A packing of cuts is called laminar if it is the
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set of coboundaries of a laminar family.) We shall not need to know the
complexity of finding a laminar system of cuts, since the size of our graph is
bounded.

Note that the fractional relaxation of a -cut packing problem is just the
dual of the Chinese Postman Problem (see Edmonds, Johnson [11]). Ed-
monds and Johnson observed that the Chinese Postman Problem can be re-
duced to a matching problem in a related weighted auxiliary graph. The main
observation that leads to the finite solvability of cographic matroids is that
(integer) optimal dual solutions for the Chinese Postman Problem also corre-
spond to (integer) optimal odd cut packings in this weighted auxiliary graph,
whose vertices are 7 := {x € V(G): t(x) = 1}, a set whose cardinality is
bounded by 2k if the number of demands in a corresponding flow problem
is bounded by k. This also implies that the well-known matching algorithms
can be converted into algorithms for the Chinese Postman Problem, with the
same complexity.

Suppose we are given the graph G, the function ¢ where the set T :=
{x € V(G): t(x) = 1} has even cardinality, and the function w: E(@—2Z".
Define the map of (G, ¢, w) to be the pair (K, d) consisting of the com-
plete graph K on T and of the distance function dix,y):= B (X, 3] o=
min{w(P): P is an (x, y) pathin G}.

Let us state now the observation that is the key to the complexity of flow
problems with a fixed number of demands:

(6.3) Let (G, t, w) bearbitrary, and (K, d) beits map. If (€, h) isan
(integer) d-packing of odd cuts in K , then there exists an (integer) w-packing
(9, 8) of t-cuts in G such that 2 i B(C)= > cez M(C), and it can be
determined in strongly polynomial time.

Note that the converse statement is obvious: if X,y€ T and P is an
(x, ) path, then clearly, the number of cuts in .7 separating x and y is
at most w(P). This is true, in particular, for a minimum weight path, and
consequently x and y are separated by at most d(x,y) elements of .7 .
Hence (7, g, isa d-packingin K . The theorem states the surprising state-
ment that conversely, from a d-packing in the “rougher” structure (K, d),
a w-packing of the “finer” (G, w) can always be “reconstructed.” The re-
constructed packing will always have the nice property that its restriction to
the map is the originally given packing.

(6.4) The problem of finding maximum integer packing of odd cuts in a
graph K can be formulated as an integer program with a HE 2872 constraint
matrix, where k := V(K).

In fact, let (K, d) be the pair to be tested. Define one variable x, for

each odd subset / of vertices of K, which makes 2" variables, and put
one constraint y {x,: |I| odd, I separates v, and v,} < d(v,, v,) foreach
pair v,, v, € V(G). Add the nonnegativity constraints X; > 0 for all the
variables.
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Combining (6.2), (6.3), and (6.4), and applying Lenstra’s result ([31]; see
also Schrijver [46]) on integer programming in fixed dimension, we easily get:

(6.5) TueoreM. Cographic matroids are finitely solvable.

Note that the worst case performance of the algorithm provided by (6.4)
is doubly exponential in k. However, this comes only from the application
of Lenstra’s algorithm. For k = 5, say, we just have a linear integer pro-
gram with 45 constraints and 256 variables, and a very particular structure,
It is very likely that by looking more carefully into this integer programming
problem, we get a better bound, and the algorithm becomes applicable in
practice. However, we cannot expect much more than the following conjec-
tures, because the problem is NP-complete in general.

ProBLEM N. Is it true that Chvatal rank of the above polyhedron is
bounded by a function of |7|? Find a polynomial algorithm for integral
multicommodity flows in planar graphs with a bounded number of demands
without using Lenstra’s algorithm.

Let us finally mention some immediate consequences of the k-sum oper-
ations on the complexity of matroid flow problems:

e Matroids without AG(2, 3), S;, and H, minors are finitely and
evenly solvable. Note that graphic matroids are even not “2-solvable.”
(According to Even, Itai, Shamir [12], even the 2-commodity flow
problem is NP-complete.)

e If the demand graph is restricted to be a K, , then multiflow prob-
lems on matroids without AG(2, 3), S; minors can be solved in
polynomial time.

The reader can deduce more general and other similar results by compo-
sition. Since any finite class is, for example, finitely solvable, we can always
take all possible 2-sums, say, of a finite class and classes we know to be
solvable: there is an infinite sequence of more and more general classes of
finitely solvable matroids. To make a real step forward though, one should be
able to describe the difference between “...-solvable” classes of matroids and
those which are not. In other words the real question about the complexity
is Problem M.
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Appendix

L. Matroid examples. First we give the definition of some matroids used
throughout the paper, following Seymour [601].

K, is the polygon matroid of the complete graph on i vertices, and KI.’ ;
that of the complete bipartite graph with ; and J element classes; H, is
the only graphic matroid for which Hije = K. R, is the binary matroid
represented by the characteristic vectors of the three-element subsets of a set

of cardinality 5;
1. 1
I 1], 8=
0 1

AG(2, 3) (3-dimensional Affine Geometry over GF(2)) is the binary ma-
troid defined on the points of the 3-dimensional affine space over GF(2),
where independence is affine independence. Equivalently, it is the binary
matroid represented over GF(2) by all 4-dimensional (0, 1)-vectors whose
last coordinate is 1. (Similarly, F, is the 2-dimensional projective geometry,
or equivalently, the 3-dimensional linear space over GF(2) without 0.)

In order to understand these matroids better, note that F, is the Eulerian
extension (for the definition, see Section 4) of K,, and R,, is the Eulerian
extension of K 3,3 > the automorphism group of all the matroids defined here
except that of H, and Sy is transitive; Ry, AG(2, 3), Sy are isomorphic
to their dual; AG(2, 3), K, o R,,, are Eulerian; AG(2, 3) and S; are
the only matroids in which deleting or contracting some nonseries and non-
parallel element we get F or its dual (important for Section 5); if M\e = K,
or M/e = K, holds for some matroid M, and M is not H, , then M has
an F, minor.

(=R}
-_oo o

1. 1
00
I 0
0 1

0 1
1 1
0 0
0 0

OO -

IL. Sums and decompositions. We give here some basic definitions and facts
from Seymour [58], [60].
Let M,, M, be matroids on the sets E,, E, and with cycle-set ?. %
respectively, where E, N E, satisfies one of the following:
(i) =a;
(i) ={d} where d is neither a loop nor a coloop of either M, or M,;
(i) = {e,e,, ey}, where {e,, €,, e,} is a cycle in both M, and M, .
The sum of these matroids is the matroid M ontheset E:=E |AE,
with cycle-set e,Ue, in case (i), {CIACQ: d¢ C,d¢ C,ordeCn
C,} in case (ii), and {C/AG,: C, € %, C,e %, Cinfe;. e, e} =
C,n{e,, e,, e;}} in case (ii1).

It is called the 1-, 2-, or 3-sum respectively, depending on whether (1), (i),
or (iii) holds. M, and M, are the members of the sum. d, or the cycle
={e,, e,, €4}, is called the marker of the 2- or 3-sum respectively.
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For 1- and 2-sums it is easy to see that both A ; and M, are minors of
M . (For more about sums see Seymour [58, Sections 2, 3, 4].) A binary
matroid is called connected or 2-connected if it is not the l-sum of two of
its proper minors. It is called 3-connected if it is neither the I- nor the 2-
sum of two of its proper minors. Otherwise it is called 1-, 2-, or 3-separable,
and the sum operation giving it as result is called a 1-, 2- or 3-separation or
decomposition.

It is well known that every matroid has a unique 1-decomposition (the
components of the matroid). By Cunningham, Edmonds [7] the list of 3-
connected matroids resulting from repeated 2-decompositions of a matroid
is also unique (and not only up to isomorphism). This result is not directly
applied in the paper, but explains why we can deduce from properties of a
given decomposition (for example, from the number of minimal nonflowing
3-connected matroids in the list) other properties depending on the matroid
only (for example, routingness; see proof of Theorem 5.5).

Cunningham and Edmonds [7] also design polynomial algorithms to do
the decompositions; for simpler algorithms see Bixby, Cunningham ([4] or
[5]). These algorithms make it possible to turn our proofs algorithmic (see
Section 5 and Theorem 6.1 and the paragraphs above it).

Let .# be a class of matroids closed under minors. S € .# is said
to be a splitter for this class if every 3-connected matroid in the class is
either isomorphic to S or does not have a minor isomorphic to S. In other
words, S is a splitter for .# if every matroid in .# can be obtained from
matroids without S-minors and matroids 1somorphic to S with the repeated
application of the 1- and 2-sum operation. To see whether a given matroid is a
splitter of a given class one only has to see whether the one-element extensions
of the given matroid contradict this fact or not:

SPLITTER THEOREM. (Seymour [58), (7.3)) Let .# be a minor-closed class
of matroids, and N € .#, N # @, a minor that has no loops, coloops, parallel
or series elements, and is different from the polygon matroid of a wheel. If
Me.#, M\e=N implies that e is a loop, coloop, or parallel element, and
Mje = N implies that e is a loop, coloop, or series element of M, then N
is a splitter for A .

Seymour [60] gives many examples of splitters. In the paper we only need
the following statements. ((a) and (c) are immediate consequences of the
Splitter Theorem using the last two remarks in Appendix I.)

COROLLARY.

(a) F, and its dual are splitters in the class of matroids without AG(2, 3)
and Sy minor (Seymour [60], (6.6)).

(b) Ry, is a splitter in the class of matroids without F, and its dual as
minors (Seymour [60], (6.7)).

(¢) K is a splitter in the class of matroids without H, and F, minors
(Seymour [60], (6.8)).
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As an immediate consequence we have:

COROLLARY, K5, F,, and R, are splitters in the class of matroids without
AG(2, 3) and Sg minor.

ITI. Routing matroids. We are finally proving the following theorem:

THEOREM. The minimal nonflowing matroids Ky, E,, and R,, are rout-
ing.

PROOF. Suppose (M, R, r, ¢) is an Eulerian network, where M isa min-
imal nonflowing matroid. For K, the statement follows immediately from
Karzanov’s theorem (Section 4.1IT), so we shall suppose M is either F, or
Rine

l(I},et us represent F, and R, with the columns of the vertex-edge inci-
dence matrix of K, and K, 5 respectively, completed by a last column 1
everywhere. We shall assume that E (M) is the set of columns in this repre-
sentation, and the graph we get by deleting the last column will be denoted
by G. G is isomorphic to Ky or K, ;.

Let 7 € R be arbitrary, and Z with the multiplicities / be a flow in
this network. Suppose indirectly that there exists no integer flow, and that
Decre) + Z‘,E‘E(M)\R c(e) is minimum among the counterexamples.

By symmetry (since the automorphism group of all the minimal nonflowing
matroids is transitive), we can assume that ¢ is the last (all 1) column of the
representation. Since M is Eulerian, the circuits of M containing ¢ are
exactly the f-joins of G.

Ciamm 1. f(C)< 1 forall Ce#.

Indeed, if f(C) > 1, then replace f(C) by f(C)—1, and decrease r(e)
and c(e) (e € C) by 1. We shall call this operation the subtraction of C from
the flow and the network respectively; the inverse operation is the addition
of C.

The new network (after having subtracted C ) 1s clearly Eulerian and has
a fractional flow, so by the minimality of our counterexample it also has an
integer flow. Adding C to this flow we get an integer flow in the original
network, a contradiction.

CLAIM 2. ¢ is contained in at most two circuits of & .

Indeed, if there are three different circuits ¢ €C,,C,, C, € &, then C\
(i=1, 2, 3) are different t-joins of G, none of which contains a demand-
edge. But the union of 3 different t-joins of K, or K, ; leaves out at most
one edge of these graphs, whence M has at most one demand-edge besides
I. But it is not difficult to sece (and follows immediately from Seymour [58],
13.4, 14.7) that F, and R 1o are evenly 2-flowing, a contradiction with the
nonexistence of an integer flow in M, R, r,¢).

Cramvm 3. r(f) = 1. r(t) > 0 because M\t is evenly cycling; r(t) < 2
because of Claims | and 2.

Cam4. If teCe® (f(C)>0), then |C|>5.
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Suppose indirectly IC] < 4. We show that subtracting C from the net-
work the Cut Condition is sti]] satisfied. This is a contradiction with the
nonexistence of an integer flow, because by Claim 3, r(¢) =0 holds after the
subtraction, and M \t=G is evenly flowing.

Since there exists a flow in (M,R,r,c), the Cut Condition is satisfied.
By the cardinality of C, forevery cut Q: 0 < c(CﬂQ\R)*r(CﬂQﬂRJ <3,
and since our network is Eulerian, in fact q4:=c(CNE\R) - r(CﬂQﬂR) is
either 0 or 2. Note that if we subtract ¢C, c(Q\R) - r(Qn R) decreases by
€q. Thus, if g =0, Q clearly satisfies the Cut Condition after subtracting
C. If g =2, then f(C)g >0, and consequently c¢(Q\R) — r(Qn R) >0,
(Because, after subtracting f (C)C, the Cut Condition is still satisfied.) Since
our network is Eulerian, ¢(C\R) - rCNR) > 2, and after the subtraction
it decreases by 1g<2.

CLAIM 5. Suppose ¢ e C,C e#, IC; s |C,] > 5. Then there exist
circuits ¢ € Cl', Cz’ of M such that the sum of CI' and CE’ is at most as
much as the sum of C, and C,.and [C[, |C)| < 4.

If M= F, there is no circuit of cardinality 5 (so Claim 4 s already a
contradiction). If Af = R, then G = K, 5, and it is €asy to see that in
K, 5 the union of two {-joins bigger than a matching contains two disjoint
matchings.

CLAIM 6. Z has only one circuit containing ¢,

For if there were two, by Claim 4 both would be of cardinality at least 5.
Let them be C, and C, , and apply Claim 5: replacing min{f(C,), G )=
0 “copies” of C, and C, by the same number of copies of C,' and Cz’ , we
get a feasible flow, and ]C[’I < 4. But this contradicts Claim 4.

Now the proof of the theorem is straightforward: by Claim 6 there is a
unique circuit C,e?® containing ¢, and thus f(C,) = r(t). But then Claim
1 and 3 contradict each other. O
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