
Discrete Applied Mathematics 156 (2008) 556–568
www.elsevier.com/locate/dam

Batch processing with interval graph compatibilities between tasks
Gerd Finke, Vincent Jost, Maurice Queyranne, András Sebő

Laboratoire Leibniz-IMAG, Grenoble, France

Received 4 October 2004; received in revised form 1 March 2006; accepted 3 March 2006
Available online 19 April 2007

Abstract

We analyze batch-scheduling problems that arise in connection with certain industrial applications. The models concern processing
on a single max-batch machine with the additional feature that the tasks of the same batch have to be compatible. Compatibility is a
symmetric binary relation—the compatible pairs are described with an undirected “compatibility graph”, which is often an interval
graph according to some natural practical conditions that we present. We consider several models with varying batch capacities,
processing times or compatibility graphs. We summarize known results, and present a min–max formula and polynomial time
algorithms.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Batch-scheduling; Task compatibilities; Interval graphs; Perfect graphs; Bounded coloring; Max-coloring

1. Introduction

A batch machinerefers to a machine that can process several tasks simultaneously. We consider here the so-called
max-batch or parallel-batch (sometimes abbreviated p-batch) machine, where the processing time of a group of tasks,
called a batch, is the longest processing time of the tasks it contains. The initial motivation for this branch of scheduling
theory was the scheduling of semiconductor burn-in operations [23]. Intensive research has subsequently been developed
on this subject for various scheduling objectives and additional constraints, see for instance the surveys [9,29].

In this paper we focus on minimizing the makespan Cmax. In addition, we assume that the tasks in the same batch
have to be compatible, for instance they must share similar physical properties (form, weight, etc.). The problem that
we want to analyze may be formulated as follows. There are n independent tasks Tj (j = 1, . . . , n) to be scheduled
on a single max-batch machine. The batch machine has capacity b, which means that at most b tasks can be processed
simultaneously (b may be finite or infinite). Each task Tj has a (minimal) processing time pj . A batch B has processing
time p(B) = max{pj : Tj ∈ B} and all tasks in the same batch start and finish at the same time. Preemption is not
allowed. Tasks in the same batch have to be pairwise compatible. This relation is represented by a compatibility graph
G = (V , E), where V is the set of tasks and a pair of tasks is an element of the edge set E if and only if they are
compatible. By definition, a batch forms a clique (a complete subgraph, not necessarily maximal) in the compatibility
graph G. Since all tasks have to be executed, the problem is to find a decomposition of G into cliques B1, B2, . . . , Bl ,
where l is not known in advance, such that the schedule length Cmax =∑

ip(Bi) is minimized. These batches may then
be scheduled in any order, without any idle time.

E-mail addresses: gerd.finke@imag.fr (G. Finke), vincent.jost@imag.fr (V. Jost), maurice.queyranne@imag.fr (M. Queyranne),
andras.sebo@imag.fr (A. Sebő).

0166-218X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2006.03.039

http://www.elsevier.com/locate/dam
mailto:gerd.finke@imag.fr
mailto:vincent.jost@imag.fr
mailto:maurice.queyranne@imag.fr
mailto:andras.sebo@imag.fr

G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568 557

The concept of scheduling with task compatibilities has been treated in [3–7] for general graphs and also for
some special graphs. This theory is related to chromatic scheduling [11] where the complementary graph (graph of
incompatibilities) is considered, leading to a graph coloring problem. For chromatic scheduling, there are usually no
capacity constraints.

We describe in Section 2 two specific industrial applications. They illustrate that interval graphs occur quite naturally
as compatibility graphs in batch processing. Recall [19,20] that an interval graph G = (I, E) is a graph for which
the node set I = {I1, . . . , In} can be identified with a set of intervals on the real line, such that two nodes I1, I2 ∈ I
are adjacent in G if and only if the intervals intersect (that is, I1 ∩ I2 �= ∅). In Section 3, the batch-scheduling models
are formulated, whereas the necessary terminology from graph theory can be found in Section 4. Solution methods are
presented in Section 5. In the final Section 6, the inclusion of release dates is discussed and some final remarks are
presented.

2. Industrial applications

Application I : In [26] a rolling-mill is described where the metal goes through repeated cycles of rolling and heating
to produce the final steel plates. In the heating phase, the metal in form of coils is piled up on a base and then heated
together in a bell furnace. Each coil Tj has to be heated for at least pj time units. A loading of the furnace represents
a max-batch. The material heated together has to be compatible, which means in this case that the coils have to have
similar heights. One may express these compatibilities by means of a tolerance height � and assign to a coil of height
H the tolerance interval [H −�/2, H +�/2]. Two metal coils are compatible if their tolerance intervals intersect. For
a given set of metal coils (tasks), one obtains an interval graph for the task compatibilities, and a clique in this graph
defines an admissible batch for the furnace. The batch size is limited by a given finite capacity b. The objective is to
minimize the total heating time Cmax.

Application II : This industrial application has been studied in [8,17,18]. A manufacturer is developing flow-lines
for the production of metallic office equipment. In a first phase, a large number of holes of various shapes and sizes are
to be punched into a metal sheet which is then bent in a second operation. The essential features of the hole-punching
facility are displayed in Fig. 1. Several heads are arranged in two parallel lines, each one equipped with a tool magazine,
and the metal sheet is moving unidirectionally through the system. The heads can move perpendicular to the direction
of the metal sheet and also have a small lateral movement of size �. Each hole-punching operation (of one or several
holes) requires a stopover and positioning of the metal sheet in the system. During the repositioning of the metal
sheet, each active head is moved to its hole-punching position and the tool magazine rotates to place the required
tool into its working position. There is, therefore, no additional tool changing time. During a stopover, all the holes
that can be reached by the various heads (equipped with the appropriate tool) are grouped together in a work phase

h

Δ

P

H

Fig. 1. A manufacturing system with six hole-punching heads.

558 G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568

(forming a batch) and punched simultaneously. The batches are again max-batches since the longest hole-punching
operation defines the duration of the work phase.

In this application, the task compatibilities are defined by the geometry of the system. We may define the compatibility
graph G = (V , E) as follows. A node of V is a pair (h, H), where h is a hole and H is a head whose tool magazine
contains the suitable tool for h and is situated on the appropriate side of the two-line system. It is assumed that for
each hole h, exactly one head H has been pre-assigned. With each node (h, H) we associate the topmost position P
of the metal sheet for which h is in front of the central position of H . Then hole h can be made by head H for all
positions of the metal sheet in interval I (h, H) = [P − �/2, P + �/2]. If two such intervals I (h, H) and I (h′, H ′)
intersect, then the two corresponding holes h �= h′ can be punched in one work phase, provided that H �= H ′. Because
of these restrictions (H �= H ′), the compatibility graph is only “almost” an interval graph. Additional features of this
application are described in the next section. The objective is to minimize the total hole-punching time Cmax. For the
solution approach in [8,17,18], the missing edges for obtaining an interval graph are taken care of and the problem is
solved approximately for all possible assignments of heads to holes. In the following, we will simplify the study and
will mostly assume that G is an interval graph but we generalize the model with respect to the other parameters.

3. Batch-scheduling models

We consider batch-scheduling problems on a single max-batch machine with task compatibilities.We use the notations
of [10]:

1/p-batch, G = �1, �2/Cmax,

where the compatibility graph is specified by the parameter �1; we use �1 = INT for an interval graph and �1 = (V , E)

for a general graph. The parameter �2 specifies the batch capacity b as follows: “b=k” for a fixed capacity; “b < n” for
variable finite capacity b which is part of the input; or �2 is void for infinite capacity. There may be other parameters
�i representing additional restrictions, for instance structured processing times, release dates, etc.

Referring toApplication II, one may as a first approximation consider the processing times as being constant (pj =1).
The size of the maximal cliques in the compatibility graph G= INT cannot exceed the number of hole-punching heads,
so that there is no limitation of the batch capacity. This leads to the problem

(P1) 1/p-batch, G = INT, pj = 1/Cmax.

Problem (P1) has been solved approximately in [8,17,18] for graphs that are slightly more general than interval graphs.
A more careful analysis of the model yields the following. For each positioning of the metal sheet in the system, a

certain number of heads will be active (punching holes). For the process to work properly, at least one head on each
side should be inactive since they are required to hold the metal sheet in position. Therefore, the more precise model
would be

(P2) 1/p-batch, G = INT, b < n, pj = 1/Cmax.

In Application II, b is the total number of heads minus two.
On the other hand, the hole-punching durations may vary. In fact, holes with large diameters have to be cut in

several successive operations along the contours of the circle (or ellipsoid). This gives two more models with arbitrary
processing times:

(P3) 1/p-batch, G = INT/Cmax,

(P4) 1/p-batch, G = INT, b < n/Cmax.

4. Definitions and notations from graph theory

Problems (P1)–(P4) can be described in the language of graph theory. For U ⊆ V , let G(U) := (U, E(U)) be
the subgraph induced by U and G − U := G(V \U) be the graph induced by vertices not in U. A clique in a graph
G = (V , E) is a set of nodes U ⊆ V inducing a complete subgraph. The clique number �(G) of a graph G is the
maximum number of vertices inducing a clique in G. The complementary graph G = (V , E) of G = (V , E) is defined

G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568 559

by (a, b) ∈ E(G) if and only if (a, b) /∈ E(G). A stable set in a graph G is clique in G and �(G)=�(G). The minimum
number of stable sets needed to partition V is the chromatic number �(G) of G. We denote the minimum number of
cliques needed to partition V by �(G). One has �(G) = �(G). A matching in a graph is a collection of disjoint edges.
An edge cover is a collection of edges covering all the vertices. A vertex is lonely if it is has no neighbor.

(P1)–(P4) ask for a partition of the node set of G into cliques B1, . . . , B� (whose number � is not specified in
advance). These cliques need not be maximal and if one allows an overlapping of the cliques, then its contribution
to the objective would increase. Therefore, the problems are also equivalent to find the minimum number of cliques
that cover the node set (that is to find a family of possibly overlapping cliques whose union is V). The objective is to
minimize the number of cliques in problems (P1) and (P2), and the total processing time

∑
ip(Bi) of all cliques in

problems (P3) and (P4). In addition, problems (P2) and (P4) constrain the size |Bi | of each clique not to exceed b.
We assume that an interval graph G = (V , E) is given by corresponding intervals V = I = {I1, . . . , In} where

Ii = [ai, bi] (i = 1, . . . , n), sorted in a nondecreasing order of the terminal endpoints bi . The other endpoint ai

is the initial endpoint of Ii . (Practice provides the intervals themselves, and interval graphs can be recognized and
reconstructed in linear time O(|V | + |E|) [19]). From now on we identify V and I and interchangeably use the words
task, interval and node. A simplicial vertex of a graph is a vertex whose neighbors form a clique. v1, . . . , vn is a
simplicial order if vi is a simplicial vertex in Gi := G(vi, . . . , vn). Any nondecreasing order of terminal endpoints in
an interval graph is a simplicial order. Chordal graphs are those that have a simplicial order (an equivalent definition
[19] is that chordal graphs do not have chordless circuits of length greater or equal to 4). G is a split graph if its vertex
set can be partitioned into two sets, one inducing a clique and the other inducing a stable set. G is a split graph if and
only if both G and G are chordal [19]. A graph is circular arc if it is the intersection graph of a family of intervals
drawn on a circle. A Helly-clique in a circular-arc graph is a set of arcs which share a common point on the circle.
Helly-cliques are cliques of the intersection graph, but not vice-versa. A graph is P4-free if it has no induced path on
four vertices.

5. Solution methods

5.1. Problem (P1)

This problem is equivalent to covering the nodes of the compatibility graph with the smallest number of cliques. The
problem is solved in polynomial time for interval graphs and the more general class of “perfect graphs”, as well as for
other graph classes (for instance circular-arc graphs), whereas it is NP-hard for general graphs, see [19,20,30].

For illustration, we solve problem (P1) for the interval graph in Fig. 2. The solution is found in a greedy fashion: the
first batch B1 is the largest batch containing the first interval I1 =[a1, b1], that is, B1 consists of all intervals containing
b1. This greedy principle is then recursively applied to the remaining intervals. Starting with the first interval I1, one
gets the largest possible clique B1 = {I1, I2, I3, I4, I5, I7} containing I1. Continuing with the next remaining interval,

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

B 1 = {I1,I 2,I 3,I 4,I 5,I 7}

B 2 = {I6,I 8,I 11}

B 3 = {I9}

B 4 = {I10}in
te

rv
al

 in
di

ce
s

interval endpoints

Fig. 2. A list of intervals given by nondecreasing finishing time, with the optimal solution to (P1) from the greedy algorithm.

560 G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568

I6, yields the second clique B2 ={I6, I8, I11}, then comes B3 ={I9} and finally B4 ={I10}. Hence an optimal schedule
is of length Cmax = 4.

5.2. Problem (P2)

In problem (P2) we want to minimize the number of cliques in the cover, subject to the restriction that every clique
must have no more than b nodes. For b=2 this problem is solvable in polynomial time for general compatibility graphs
[7], since it reduces to finding a maximum cardinality matching in G. (P2) is NP-hard in P4-free graphs, as well as in
complementary of bipartite graphs [1]. For any fixed b�4, (P2) is NP-hard in complementary of interval graphs [1]
and for any fixed b�6, it is NP-hard in permutation graphs [24]. In contrast, we provide a simple greedy algorithm to
solve (P2) in interval graphs. We realized after submission that a solution has already been published in [1] using earlier
results [27]. Our original algorithm is kept for pedagogical reasons since we improve on earlier results by providing
a min–max relation for (P2). This relation holds for interval graphs and in several other interesting cases. (P2) is also
polynomial in split graphs [1,3,16] and even in chordal graphs [25]. In [21,1], the so-called bounded coloring problem
(equivalent to (P2) by taking the complementary graph) is studied and solved for some other classes of graphs (see [16]
for a survey).

A b-clique in a graph G is a clique Q of G with size |Q|�b. A b-clique cover of the graph G = (V , E) is a family
B of b-cliques that cover V . Its size is |B|. Letting B(G, b) denote the set of all b-clique covers of G, the optimum
objective value of problem (P2) is

(P2) �b(G) := min
B∈B(G,b)

|B|.

Note that �b(G) is a monotonous function of G, that is, �b(G)��b(G − v) for all v ∈ V (G).
For U ⊆ V , let C1(U), C2(U), . . . , Ct (U) be the node sets of the connected components of G(U) and

�b(G, U) :=
t∑

i=1

⌈ |Ci(U)|
b

⌉
, (1)

where �x	 denotes the (real) number x rounded up to the nearest integer. Let

�b(G) := max
U⊆V

�b(G, U). (2)

Min–max relation and algorithms for b = 2 or �(G)�3 or �(G)�b: If we are covering with cliques of small size
or of unrestricted size, then (P2) is linked with some well-known problems.

The case b = 2 is equivalent to find a minimum edge cover of G:

Theorem 1. For every graph G, one has �2(G) = �2(G), or equivalently:

min
B∈B(G,2)

|B| = max
U⊆V

�2(G, U). (3)

Moreover �2(G) can be computed in polynomial time.

Proof. If v ∈ V is a lonely vertex of G, then �2(G − v) = �(G) − 1 and �2(G − v) = �2(G) − 1. If G has no
lonely vertices, a partition by cliques of size at most 2 is equivalent to an edge cover. The minimum in (3) is therefore
equivalent to a minimum edge cover of G. (3) is therefore equivalent to [30, (27.3), p. 461]. Finding a minimum edge
cover can be done in polynomial time by a matching technique [30]. �

Since it is NP-complete to decide whether a graph can be vertex-partitioned into triangles [15], which is equivalent
to �3(G) = n/3, we cannot expect a polynomial algorithm and formula to be valid for b = 3. Moreover, if the capacity
is not bounded, we have to deal with the ordinary coloring problem in the complementary graph which is also NP-hard
[15]. We therefore restrict ourselves to graphs for which the clique partitioning problem is tractable: the graphs we will
handle are perfect graphs. For b = 3, (P2) can be solved for perfect graphs with clique number at most 3 [21]. We prove
that the min–max formula also holds:

G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568 561

Fig. 3. Graph G such that 3 = minB∈B(G,3)|B| > maxU⊆V �3(G, U) = 2.

Theorem 2. For every perfect graph G with �(G)�3 and any positive integer b, one has �b(G) = �b(G), or equiva-
lently:

min
B∈B(G,b)

|B| = max
U⊆V

�b(G, U). (4)

Proof. Case (1): b�2. The assertion follows from Theorem 1.
Case (2): b��(G). In this case, every clique of G is also a b-clique, so �b(G)=�(G). Since G is perfect, �(G)=�(G).

Noting that for any stable set S one has �b(G, S) = |S|, and choosing S∗ to be a maximum stable set we get:

�b(G) = �(G) = �(G) = |S∗| = �b(G, S∗)��b(G).

Equality holds throughout using weak duality (see (5) below). �

In case (2) above, optimal solutions can be computed in polynomial time in the framework of perfect graphs [20,30].
In the case of unrestricted capacities, we also have �b(G) = �(G)��(G) = �b(G), and hence equality in the case of
perfect graphs:

Theorem 3. Eq. (4) holds for any perfect graph G and any integer b such that �(G)�b.

Proof. See case (2) in the proof of Theorem 2 above. �

If �(G)�4 and b < �(G), the min–max formula does not necessarily hold even if the graph is perfect and even if
it is co-bipartite, as shown in Fig. 3. Notice that this graph arises by replication [30] (from a “house” graph G′ = P5
for which �3(G

′) = �3(G
′) = 2). Hence, unlike for perfect graphs, replication does not preserve the validity of the

min–max equality. Minimal graphs for which the min–max equality does not hold are studied in [25].
In the following, we prove the min–max equality for interval graphs. Let us first discuss the formula in general:
The Min–max formula in general: The weak duality (the “easy part” of the min–max equality) holds for arbitrary

graphs:

Weak Duality. For every graph G and every positive integer b,

min
B∈B(G,b)

|B|� max
U⊆V

�b(G, U). (5)

Proof. For any U ⊆ V , a b-clique cover of G trivially induces a b-clique cover of G(U) with no more cliques:

min
B∈B(G,b)

|B| = �b(G)��b(G(U)) =
∑

i

�b(G(Ci(U)))

�
∑

i

⌈ |Ci(U)|
b

⌉
= �b(G, U).

This completes the proof of (5). �

The equality does not always hold and not even for perfect graphs as shown in Fig. 3. However, the graph in Fig. 3
contains a circuit without chord. The validity of the min–max formula and the existence of a polynomial algorithm for
solving (P2) were recently proved for chordal graphs [25].

562 G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

B1 = {I1, I 2, I 3}

B2 = {I4, I 5, I 7}

B3 = {I6, I 8, I 11}

B4 = {I9}

B5 = {I10}in
te

rv
al

 in
di

ce
s

interval endpoints

Fig. 4. Optimal solution from GAC for problem (P2) with b = 3.

Greedy algorithm and formula for interval graphs:The following algorithm—that we will call GAC (greedy algorithm
with compatibility)—constructs a b-clique cover for an interval graph, where the graph is given with an interval
representation and a positive integer b is given. In this algorithm, batches (cliques) are successively created in the order
B1, . . . , B�, (� is a positive integer). At any step of the algorithm, a batch Bi is called unsaturated if it contains fewer
than b intervals, that is, if 1� |Bi | < b; else |Bi | = b and batch Bi is saturated.

Consider the tasks in nondecreasing order I1, . . . , In of their terminal endpoints bi , breaking ties arbitrarily. The
terms “first”, “last”, “before”, “after” will refer to this order. Note, however, that interval J may be after interval I and
yet be placed before I because of incompatibility of I. The following algorithm finishes each batch before starting
another:

The Algorithm GAC. Construct one batch per iteration until all intervals are placed into batches. In iteration i
(i = 1, . . . , l) open a new batch Bi and label it with the first interval Ij = [aj , bj] that has not yet been placed in a
batch. Starting with Ij place into Bi the first b not yet affected intervals containing bj (or all of them if they are fewer
than b).

The terminal endpoints of the labels are clearly nondecreasing.
It is easy to see that the following algorithm provides the same result—and shows that GAC can be viewed as a

version of the classical “first-fit” algorithm for bin packing (see e.g. [22]), modified to take into account the compatibility
constraints: start with no batch and insert interval Ij (j = 1, . . . , n) in the unsaturated batch Bi which has lowest index
i and is compatible with Ij ; if there is no such (unsaturated and compatible) batch then a new batch is created and
interval Ij is put into it.

GAC is illustrated in Fig. 4.

Theorem 4. For every interval graph G and every positive integer b, GAC solves problem (P2).

The reformulated version of the algorithm (first-fit with compatibility) stops after O(n log n) time.

Proof. We proceed by induction of the number of intervals. Let B1, B2, . . . , Bl be a batch sequence constructed
by algorithm GAC. Since for the graph G − B1 the sequence B2, . . . , Bl is selected by GAC (compare with
the definition of the algorithm), it is sufficient to show that there exists B ∈ B(G, b) minimizing |B| such that
B1 ∈ B.

Let the label (the first interval) of B1 be I1 = [a1, b1] (b1 is the first endpoint among all). Recall that I1 is a
simplicial vertex. Let D1 be the batch containing I1 in an optimal batch sequence D, and suppose |D1 ∩ B1| is
maximum among all possible choices of D. We show D1 = B1. Note that I1 ∈ D1 implies that all intervals in D1
contain b1. (They start no later than b1 by compatibility, and cannot end before b1, since b1 is the first terminal
endpoint.)

G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568 563

If |B1| < b, then B1 consists of all neighbors of I1. Since D1 is a clique containing I1, D1 ⊆ B1. We have then by
monotonicity

|B| − 1 = �b(G − B1) ≤ �b(G − D1) = |D| − 1,

proving the optimality of B.
Otherwise |B1| = b. Suppose for a contradiction that Ij ∈ B1\D1. Then—since again, D1 ⊆ B1 can be excluded

by monotonicity—there exists Ik = [ak, bk] ∈ D1\B1. Recall that B1 consists of the first b intervals, so j < k, bj �bk;
that b1 ∈ Ik , as Ik ∈ D1. Define then D′

1 := (D1\{Ik}) ∪ {Ij } and redefine the batch D ∈ D containing Ij as
D′ := (D\Ij) ∪ Ik . The redefined batches satisfy the compatibility constraint: D′

1 does, since b1 ∈ Ij , and b1 is
contained in all intervals of D1 as well; D′ does, since Ik meets all intervals met by Ij (bj �bk , b1 ∈ Ik , and all terminal
endpoints are greater than or equal to b1).

On the other hand, |D′
1 ∩ B1| > |D1 ∩ B1| contradicting the choice of D, and finishing the proof. �

Theorem 5. For every interval graph G and every positive integer b the following min–max relation holds:

min
B∈B(G,b)

|B| = max
U⊆V

�b(G, U). (6)

Proof. By weak duality (5), we know that �b(G)��b(G). We prove the reverse inequality by induction on n:
It is obvious for n = 1. Suppose it has been proved for graphs with fewer vertices than G. We can suppose that G is

connected, otherwise we proceed by components. First note that in case there exists v ∈ V (G) with �b(G−v)=�b(G)

we are done, since then by the induction hypothesis we have

�b(G) = �b(G − v) = min
B∈B(G−v,b)

|B| = min
U⊆V \{v} �b(G, U)� min

U⊆V
�b(G, U).

We can therefore suppose that �b(G − v) < �b(G) for all v ∈ V (G). Under this assumption, we show that the batches
found by GAC partition V (G) into cliques of size b and a single batch B with |B| = 1. Indeed, the algorithm outputs at
least one unsaturated batch since otherwise �b(G − v) = �b(G) for any v ∈ V (G). Let B ∈ B be the first unsaturated
batch. If |B|�2 then let L be the last placed interval of B, and let I be the label of B (that is, the first placed interval).
Since all intervals placed after L are disjoint from I, the algorithm determines the same batches on G−L as on G (except
that B will have one fewer interval), and by Theorem 4 it determines an optimal solution. Therefore �b(G−L)=�b(G),
a contradiction.

So |B| = 1. Let t be the terminal endpoint of the unique interval I ∈ B. First, note that the intervals placed after I
have their terminal endpoints greater than t ; since they do not contain t (otherwise they would be placed in B) their
starting point is also greater than t .

We show that the terminal endpoints of intervals placed before I are at most t , implying that such intervals are
disjoint from those placed after I. Indeed, if not, let J be the last interval placed before I that contains t . Then �b(G −
J) = �b(G), because none of the intervals placed into the batches strictly after the batch of J until I (including I)
can be placed in the batch of J: if any of them would, then they would have been placed there by GAC, not J. The
contradiction �b(G−J)=�b(G) leads to the conclusion that the intervals placed before I are disjoint from those placed
after.

Therefore the intervals placed before I form a component of G, and since G is connected this is all G. Then G is
clearly of the claimed form and the theorem is proved. �

The proof is algorithmic after extracting the following observations: intervals in unsaturated batches which are not
labels of their batch, can be deleted without changing �b; furthermore, any interval that contains the terminal endpoint
of the label of an unsaturated batch can be deleted even if it is in another (possibly saturated) batch. To summarize, we
can say that all nonlabel intervals that contain the terminal endpoint of the label of any unsaturated batch can be deleted
without decreasing �b. (The proof actually establishes and uses only the nonexistence of such intervals [containing the
label of an unsaturated batch, and not equal to this label] in a minimal counterexample, instead of making use of the
stronger statement �b(G − v) < �b(G).) In the course of the deletion process some batches that were saturated can
become unsaturated.

564 G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568

It follows that the following algorithm finds an optimal U for the right-hand side of Theorem 5: browse through
intervals in the reverse order {In, . . . , I1} and delete those that contain the terminal endpoints of the label of an
unsaturated batch. Some new batches may become unsaturated in this way, and with the exception of the label, all
intervals in such batches will in turn be deleted. According to the proof, what remains is an optimal U, more precisely
U ⊆ V (G) with the property that all the components of G(U) are partitioned into cliques of size b and a batch of size
1, and in addition �b(G(U)) = �b(G).

Let us show how this algorithm determines the maximum in Theorem 5 on the example of Fig. 4: I11 is deleted
since it intersects the unsaturated batch B5, I10 and I9 are kept since they are labels; I8 is deleted since it contains the
terminal point of the label of the now unsaturated batch {I6, I8}. Finally, the maximum (=5) on the right-hand side in
Theorem 5 is attained with U = {I1, I2, I3, I4, I6, I9, I10}.

(P2) is solvable in polynomial time in split graphs [1,3,16], and can in fact be shown to have the same complexity
as bipartite matching [16]. Since split graphs are chordal one cannot expect to extend a greedy type algorithm to
chordal graphs for (P2), (unless one finds a greedy algorithm for matching problems). In fact polynomiality of (P2)
and Theorem 5 can be proved in chordal graphs using a canonical simplicial decomposition associated with a matching
technique [25].

5.3. Problem (P3)

This problem has been posed at the MAPSP 2003 conference and also to visitors in Grenoble. In addition to the
authors, two other groups have come up independently in November 2003 with the same polynomial time dynamic
programming approach [2,12]. See [22] for references on dynamic programming. (P3) is solvable by a greedy algorithm
in P4-free graphs [11]. On the other hand, (P3) is strongly NP-hard in split graphs and in the complementary of
bipartite graphs [11]. Although NP-hard, (P3) is 4-approximable in perfect graphs [28] and within better ratios in
some subclasses of perfect graphs, as surveyed in [14]. (P3) is usually studied in its coloring version (equivalent by
considering the complementary graph) which is often called max-coloring.

Theorem 6. We can use dynamic programming to solve problem (P3) in interval graphs in O(n3) time.

Proof. Let {Ii = [ai, bi]}i=1,...,n be a set of intervals on the real line representing graph G. We consider the set X of
endpoints of the intervals.

X = {ai}i=1,...,n ∪ {bi}i=1,...,n ∪ {−∞} ∪ {+∞}
= {x1, . . . , xq} with x1 < x2 < · · · < xq .

For every pair of values xi < xj ∈ X, let F(xi, xj) denote the optimum value of the objective function of (P3) for
the restricted instance I(xi, xj) (or subproblem) consisting of all intervals completely contained in the open interval
]xi, xj [, with F(xi, xj) = 0 if I(xi, xj) = ∅. Our dynamic programming approach is based on Lemma 1 below, which
implies that we can separate the problem restricted to I(xi, xj) in two subproblems, using an interval of maximum
weight. For this, let

�(i, j) ∈ argmax{pa : Ia ∈ I(xi, xj)}. (7)

Recall that a maximal clique is maximal for inclusion, not necessarily for cardinality.

Lemma 1. There is an optimal schedule for I(xi, xj) in which the batch containing I�(i,j) is a maximal clique of
G(I(xi, xj)).

Proof. Let S ={B1, B2, . . . , Bl} be a feasible schedule. W.l.o.g, let I�(i,j) ∈ B1. Let K be a maximal clique containing
B1. Then the schedule S′ = {K, B2\K, . . . , Bl\K} is feasible and no worse than S. This is because every batch
except the first one has been decreased; batches B1 and K have the same processing time p�(i,j) because of the choice
of �(i, j). �

G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568 565

In light of Lemma 1 one has,

Lemma 2. For arbitrary fixed xi < xj in X, let �(i, j) be defined as in (7) and Y =X ∩ I�(i,j). The following recursion
holds:

F(xi, xj) = p�(i,j) + min
z∈Y

(F (xi, z) + F(z, xj)). (8)

Proof. By Lemma 1, it is optimal to include the interval I�(i,j) into some maximal clique B∗. The cost of B∗ is p�(i,j).
Since B∗ is maximal, there is a point z∗ in the intersection of all intervals Ik ∈ B∗ such that B∗ is the set of all intervals
Ik = [ak, bk] ∈ I(xi, xj) satisfying ak �z∗ �bk . Thus we may choose z∗ in X, and therefore in Y. Given such point
z∗, the graph G(I(xi, xj)\B∗) decomposes into two disconnected subgraphs G(I(xi, z

∗) and G(I(z∗, xj)) since
every interval in I(xi, z

∗) has its terminal endpoint before the initial endpoint of every interval in I(z∗, xj). One can
therefore solve the problems on these two subgraphs independently. (See the illustration in Figs. 5–7.) �

I1
I2

I3

I4

I5

I6
I7

I8

I9
I10

I11

0 1 2 9 10 11 12 13 14 15 16 17 18 19 20
0
1
2
3
4
5
6
7
8

pr
oc

es
si

ng
 ti

m
e

interval endpoints

3 4 5 6 7 8

Fig. 5. DP recursion (8) for an instance of (P3). The dashed lines indicate values of z defining the two maximal cliques containing I6 = I�(−∞,+∞),
that is, Y = {9, 11}. Figs. 6 and 7 show the subproblems to be solved for each such maximal clique. The optimum values of the corresponding
subproblems are obtained at earlier stages of the DP algorithm.

I1
I2

I8

I9
I10

I11

0 1 2 9 10 11 12 13 14 15 16 17 18 19 20
0
1
2
3
4
5
6

pr
oc

es
si

ng
 ti

m
e

interval endpoints

3 4 5 6 7 8

Fig. 6. The two subproblems I(1, 9) and I(9, 20) if we choose z = 9 (in which case we had B1 = {I6, I7, I3, I5, I4}).

I1
I2

I3

I4
I9

I10

I11

0
1
2
3
4
5
6

0 1 2 9 10 11 12 13 14 15 16 17 18 19 20

pr
oc

es
si

ng
 ti

m
e

interval endpoints

3 4 5 6 7 8

Fig. 7. The two subproblems I(1, 11) and I(11, 20) if we choose z = 11 (in which case we had B1 = {I6, I7, I8, I5}).

566 G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568

Our dynamic programming algorithm starts from the initial conditions

F(xi, xi+1) = 0 for all i = 1, . . . , q − 1.

Applying the recursion (8) with increasing subproblem width xj − xi , it computes an optimal schedule

S(xi, xj) =
{∅ if I(xi, xj) = ∅,

S(xi, z
∗) ∪ B∗ ∪ S(z∗, xj) otherwise.

The optimum value is Cmax=F(x1, xq), and S(x1, xq) is an optimal solution. Since there are O(q2)=O(n2) subproblems
and O(q) = O(n) candidate values for z in each subproblem, the resulting dynamic programming algorithm solves
problem (P3) in O(n3) time. This completes the proof of Theorem 6. �

This approach extends to optimal partition of circular-arc graphs into Helly-cliques.1 The following algorithm
provides an optimal partition into Helly-cliques in time O(n3). Extend the definition of F(xi, xj) to any pair (xi, xj) of
distinct endpoints, by considering that xi is before xj in clockwise order on the circle. Since the resulting subproblem
I(xi, xj) reduces to that on an (ordinary) interval graph, recursion (8) still applies and yields all O(n2) values F(xi, xj)

in O(n3) time. Now, there is an optimal partition into Helly-cliques in which the batch containing I(xi, xj) (defined
by Eq. (7)) is a maximal Helly-clique of G. Indeed, the proof of Lemma 1 extends to optimal partitions into edges of a
hereditary hypergraph [25]. Finally, we only need to choose the best of the O(n) values F(xi, xj) where xj immediately
precedes xi in clockwise order and both endpoints are contained in interval I�(i,j). This gives a O(n3 + n) = O(n3)

algorithm for the optimum partition into Helly-cliques of circular-arc graphs.

5.4. Problem (P4)

For general graphs, the problem

1/p-batch, G = (V , E), b = 2/Cmax

is solvable in polynomial time [7]. Indeed, an optimal solution can be obtained by transforming the problem into a
maximum weight matching problem as follows. Assign the weights min{pi, pj }=pi +pj − max{pi, pj } to the edges
(i, j) ∈ E and solve the maximum weight matching problem in G. Then for each edge of the matching, process the
corresponding two tasks in the same batch. The other tasks are processed as single task batches.

Boudhar [3] shows that problem

1/p-batch, G = (V , E), b = k/Cmax

is NP-hard for split graphs, for every k�3. The complexity status of problem (P4) for interval graphs and k�3
remains open.

6. Batching with release dates and other extensions

So far, we have assumed that all tasks are available at the same time. This is appropriate for Application II. However,
in Application I, one typically has several successive cycles of rolling and heating so that there is a flow of the material
to the furnace, resulting in different release dates rj for the tasks Tj . Hence, we define problems (P′1)–(P′4) by adding
release dates rj to the corresponding problems (P1)–(P4). Application I would then be modelled by problems (P′2)

and (P′4).
Batching with arrival times changes the nature of the problem substantially, as it is no longer sufficient to just

partition the tasks into batches: we must also schedule these batches to take into account the release dates. Defining
the earliest date r(B) = max{rj : Tj ∈ B}, at which a batch B can be started, the batch completion times c(Bi) of a

1 This does not provide a solution for problem (P3) in this class of graphs. However, cyclic scheduling problems have a more natural link with
partitions into Helly-cliques than with partitions into cliques.

G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568 567

feasible batch schedule must now satisfy the release date constraints c(Bi)�r(Bi) + p(Bi). The schedule makespan
is Cmax = maxic(Bi). Boudhar [5] shows that problem (P′2) with unit processing times and capacity b = 2,

1/p-batch, G = (V , E), b = 2, ri , pi = 1/Cmax

is strongly NP-hard for split graphs. The complexity status of this problem for interval graphs is unknown.
Further extensions, arising in connection withApplication I, may be defined. On one hand, it may be more appropriate

to replace Cmax with a flow time criterion, since one would like to reduce the storage of the semi-finished products
on the shop floor. On the other hand, the compatibility relations may also be extended. Rather than only considering
compatibility with respect to the height of the metal coils, one might also add compatibility for the diameters, weights,
etc. Each characteristic (measurement) has its tolerance limits and therefore defines an interval graph. This leads to a
compatibility graph which is the intersection of interval graphs. Such a graph may neither be an interval graph, nor
even a perfect graph.

Acknowledgment

This research is supported by INTAS Grant 03-51-5501 as well as by the ADONET network of the European
Community, which is a Marie Curie Training Network. We thank our colleagues Claudson Bornstein, Jayme Szwarcfiter,
Emmanuel Desgrippes and Christophe Rapine for sharing with us their results [2,12], Mourad Boudhar for pointing
out his results in Ref. [3] and Bruno Escoffier for sharing his knowledge concerning max-coloring [14].

References

[1] H.L. Bodlaender, K. Jansen, Restrictions of graph partition problems, part I, Theoret. Comput. Sci. 148 (1) (1995) 93–109.
[2] C. Bornstein, J.L. Szwarcfiter, Personal communication, Rio de Janeiro, November 2003.
[3] M. Boudhar, Static scheduling on a single batch processing machine with split compatibility graphs, Cahier No. 28, Laboratoire Leibniz,

Grenoble, 2001.
[4] M. Boudhar, Scheduling a batch processing machine with bipartite compatibility graphs, Math. Methods Oper. Res. 57 (2003) 327–513.
[5] M. Boudhar, Dynamic scheduling on a single batch processing machine with split compatibility graphs, J. Math. Modelling Algorithms 2 (2003)

17–35.
[6] M. Boudhar, G. Finke, Scheduling on batch processing machines with constraints of compatibility between jobs, in: Proceedings of the Second

Conference on Management and Control of Production and Logistics (MCPL’2000), vol. 2, Grenoble, 2000, pp. 703–708.
[7] M. Boudhar, G. Finke, Scheduling on a batch machine with job compatibilities, Belgian J. Oper. Res. Statist. Comput. Sci. 40 (2000) 69–80.
[8] N. Brauner, C. Dhaenens-Flipo, M.-L. Espinouse, G. Finke, H. Gavranovic, Decomposition into parallel work phases with application to the

sheet metal industry, in: Proceedings of the International Conference on Industrial Engineering and Production Management (IEPM’99), vol.
1, Glasgow, 1999, pp. 389–396.

[9] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C. Potts, T. Tautenhahn, S. van de Velde, Scheduling a batching machine, J. Scheduling
1 (1998) 31–54.

[10] P. Brucker, S. Knust, Complexity results of scheduling problems, 〈www.mathematik.uni-osnabrueck.de/research/OR/class/〉.
[11] M. Demange, D. de Werra, J. Monnot, V.T. Paschos, Time slot scheduling of compatible jobs, Cahier du Lamsade No. 182, Université Paris IX,

Dauphine, Paris, 2001.
[12] E. Desgrippes, C. Rapine, Personal communication, Grenoble, November 2003.
[14] B. Escoffier, Approximation polynomiale de problèmes d’optimisation: Aspects structurels et opérationnels, Ph.D. Thesis, Laboratoire LAM-

SADE, Paris Dauphine, 2005.
[15] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman, San Francisco, CA, 1979.
[16] F. Gardi, Ordonnancement avec exclusion mutuelle par un graphe d’intervalle ou une classe apparentée: complexité et algorithmes, Ph.D.

Thesis, Laboratoire d’informatique fondamentale, Faculté des sciences de Luminy, 2005.
[17] H. Gavranovic, Affectation de fréquences et conception optimale d’une ligne de production: modèles et algorithmes de résolution, Ph.D. Thesis,

Université Joseph Fourier, Grenoble, 2002.
[18] H. Gavranovic, G. Finke, Graph partitioning and set covering for the optimal design of a production system in the metal industry, in: Proceedings

of the Second Conference on Management and Control of Production and Logistics (MCPL’2000), vol. 2, Grenoble, 2000, pp. 603–608.
[19] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
[20] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 1988.
[21] P. Hansen, A. Hertz, J. Kuplinsky, Bounded vertex colorings of graphs, Discrete Math. 111 (1993) 305–312.
[22] D.S. Hochbaum, Approximation Algorithms for NP-Hard Problems, PWS Publishing Company, 1995.
[23] D.S. Hochbaum, D. Landy, Scheduling semiconductor burn-in operations to minimize total flowtime, Oper. Res. 45 (1997) 874–885.

http://www.mathematik.uni-osnabrueck.de/research/OR/class/

568 G. Finke et al. / Discrete Applied Mathematics 156 (2008) 556–568

[24] K. Jansen, The mutual exclusion scheduling problem for permutation and comparability graphs, Inform. and Comput. 180 (2) (2003) 71–81.
[25] V. Jost, Ordonnancement chromatique: Polyédres, Complexité et Classification, Ph.D. Thesis, Laboratoire Leibniz, UJF, Grenoble, 2006.
[26] P.L. Nguyen, Planification tactique de la production: approche hiérarchisée pour une classe d’entreprises de sous-traitance et application au cas

de laminage à froid, Ph.D. Thesis, Université Joseph Fourier, Grenoble, 1997.
[27] C.H. Papadimitriou, M. Yannakakis, Scheduling interval-ordered tasks, SIAM J. Comput. 8 (1979) 405–409.
[28] S.V. Pemmaraju, R. Ramman, Approximation algorithms for the max-coloring problem, ICALP’05, 2005, accepted for publication.
[29] C.N. Potts, M.Y. Kovalyov, Scheduling with batching: a review, European J. Oper. Res. 120 (2000) 228–240.
[30] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, Berlin, 2003.

	Batch processing with interval graph compatibilities between tasks
	Introduction
	Industrial applications
	Batch-scheduling models
	Definitions and notations from graph theory
	Solution methods
	Problem (P1)
	Problem (P2)
	Problem (P3)
	Problem (P4)

	Batching with release dates and other extensions
	Acknowledgment
	References

