17

Graphic Submodular Function Minimization:
A Graphic Approach and Applications

Myriam Preissmann and Andrés Sebd

Summary. In this paper we study particular submodular functions that we call
“graphic”. A graphic submodular function is defined on the edge set E of a graph
G = (V, E) and is equal to the sum of the rank-function of G and of a linear function
on E. Several polynomial algorithms are known that can be used to minimize graphic
submodular functions and some were adapted to an equivalent problem called “Opti-
mal Attack” by Cunningham. We collect eight different algorithms for this problem,
including a recent one (initially developed for solving a problem for physics): it con-
sists of |V| — 1 steps, where the i-th step requires the solution of a network flow
problem on a subgraph (with slight modifications) induced by at most i vertices of
the given graph (i = 2,..., |V]). This is a fully combinatorial algorithm for this
problem: contrary to its predecessors, neither the algorithm nor its proof of validity
use directly linear programming or keep any kind of dual solution. The approach is
direct and conceptually simple, with the same worst case asymptotic complexity as
the previous ones. Motivated by applications, we also show how this combinatorial
approach to graphic submodular function minimization provides efficient solution
methods for several problems of combinatorial optimization and physics.

17.1 Introduction

For basic graph theoretic notions, terminology and notation we refer to Lovdsz (1979).

Given a finite set E, a function f : 22 —» R is called submodular, if for any two
Subsets A, B C E:

fA)+ f(B)= fF(AUB) + f(AN B). (SUB)

S

Inhonor of Bernhard Korte’s 70-th birthday and in memory of the pioneering work and important achieve-
Mments that have been reached concerning submodular functions in the Institut fiir Disckete Mathematik,
Qkonumerric und Operations Research in the *80-s and "90-s, due to the generous visitor's program and
high quality research and training of the institute led by Professor Korte, the results of which provide the
background of the present work.
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366 M. Preissmann and A. Sebg

In this paper f will be called modular if the equality holds and F@) = 0, that i,
f(A) = 2 aea f(a). (We use here and in the following the notation a instead of {a}
when no confusion is possible.)

The submodular function S will be called graphic if E is the set of edges of 3
graph G = (V, E) and moreover f =r+w, where f,r,w: 2 —s R, r =rgis
the rank-function of G. that is,for X CE, r(X) :=n— cG(X), where ¢ (X) is the
number of connected components of G — (V, X) and w is any modular function,
We will use the notation 5 — |V | throughout.

It is well-known and easy to check that r is a submodular function, and since w

is modular, f is also submodular. Graphic submodular function minimization is the
following problem:

GRAPHIC submodular FUNCTION MINIMIZATION (GSM)
Input: graph G = (V, E)w:E—R
Output: X C E that minimizes r + w.

As will be shown in the next sections, Graphic Submodular Function Minimiza-
tion is useful for several applications such as computing the strength of a graph, soly-
ing the optimal reinforcement problem or approximating the partition function in the
Potts model when the number of states tends to infinity. Our attention to Graphic
Submodular Function Minimization was initiated by this last problem suggested by
physicists. In an article that appeared in Journal of Physics A (Anglés d’ Auriac et al.
2002) we already explain how it could be solved efficiently, allowing the solution of
the problem for several hundred thousands of variables instead of one or two dozens
provided by previous approaches. We give here the full details and mathematical
background of this direct algorithm for graphic submodular function minimization.
We also give a detailed analysis of the problem by comparing several ( eight different)
possible solution methods, their interconnections and their applications to physics or
to some other problems. Notice that the previously known specific algorithms for
Graphic Submodular Function Minimization were studied in the (equivalent) formu-
lation of “Optimal Attack” (see Sect. 17.3.2).

For convenience we will most of the time consider the following equivalent prob-
lem, that we will call Optimal Cooperation:

Maximize {f(;_“.(A) =cg(A) + Z wle) : A C E(G)}. (0C)
ecA

This problem could indeed arise from the following “academic” situation. In a re-
search institute, bilateral cooperations between researchers (vertices) are encouraged
by the state: the weight of an edge represents the reward for cooperation between
two researchers. Furthermore there is q unit support for each research project (set of
people connected by cooperations, no cooperation is possible outside a project). So
for instance there is a loss of support when two components unite unless the benefits
from cooperations between the two sum up to at least 1. The goal of the researchers

is to realize the cooperations in a way which maximize the total amount of money
received from the state. Cooperate optimally!
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Subtracting n and replacing w by —w in the expression of f.,, we get exactly
the function of (GSM) multiplied by —1, so (OC) is equivalent to (GSM) and maxi-
mizing fG,w (= n — (r + (—w)) is equivalent to minimizing the graphic submodular
function r + (—w). From this it is clear that f = fg ,, is supermodular, that is,

f(A)+ f(B) < f(AUB)+ f(AN B). (SUPER)

When no confusion is possible we will simply use f or fg for f5 . ¢ for ce.

When considering (OC) we can (and we will always) suppose 0 < w(e) < 1
for all ¢ € E(G), because if w(e) < 0, then deleting the edge, if w(e) > 1, then
contracting it (identifying its two endpoints and keeping the other weights) we get
an equivalent problem. We will call such w a weight function on the edges.

An important observation: if F is a set of edges, and X is the vertex set of a
connected component of G(F), then adding to F edges induced by X, that is with
both endpoints in X, increases the value of f. Thus in an optimal solution F* C E
of (OC) each connected component of F* contains all the edges of G it induces.

Given a graph G = (V, E) with edge-weighting w we will say that the value of
a partition P of V is

ge.uw(P) =|P|+ Z{w(.ry): xy € E(G) : x and y are in the same class of P}.

Another important observation: if P is a partition of V containing a set W such
that the subgraph G (W) induced by W is not connected, then replacing in 7 the set
W by the sets of vertices of the connected components of G(W) increases the value
of g . Thus a partition P* maximizing g ,, is such that each of its sets induces a
connected subgraph of G.

For any subset F of edges let w(F) = > oer w(e) and denote by Pg r (or
simply 7r when no confusion is possible) the partition of V(G) determined by the
components of G(V, F). For any set S of disjoint subsets of V we denote by E(S)
the subset of edges of E with both extremities in the same set of S and by §(S)
the set of edges of E joining vertices belonging to two different sets in S. So for
a partition P of V, E(P) and &(P) partition the edge-set E and we can write the
preceding equation as:

86.w(P) = |P| + w(E(P)).

From the preceding observations it is clear that there is a one to one correspon-
dence between subsets of edges maximum for fg ., and partitions of the vertices
maximum for g ,,. As will be shown in the following, it is possible to compute an
optimal subset of edges using a greedy algorithm on the vertices.

By now several polynomial algorithms (Grotschel et al. 1981, 1988; Schrijver
2000; Twata et al. 2001; Iwata 2002) are known to minimize a submodular function.
However, it does not seem to be evident how these general algorithms could exploit
the particularity of graphic submodular function minimization and provide an effi-
cient algorithm for this case. Fortunately, the specific properties of our problem make
Possible the use of a considerably simpler and quicker algorithm.

)i




368 M. Preissmann and A. Sebs

Another possibility is to use matroids or polymatroids and “primal—dual meth-
ods”. An algorithm for finding an optimal solution of (OC) follows from Edmonds’
matroid partition algorithm (Edmonds 1965), but a careless reduction to matroid
partition is not sufficient for the polynomial time bound. Cunningham (1984) gen-
eralized and sharpened Edmonds’ algorithm to matroid rank functions shifted by a
linear function, and this provides the first algorithm not using the ellipsoid method
for maximizing f; ,, with polynomial running time, as early as 1984. Cunning-
ham (1985) also worked out a specialized algorithm to the “Optimal Attack prob-

3%

lem”,

A crucial progress about the ‘Optimal Attack’ problem has been made later on by
Barahona (1992) and Baiou et al. (2000), which made possible to decrease the com-
plexity of the problem with an order of magnitude: the consideration of edges one
by one is replaced by the consideration of vertices. Both Cunningham’s and Bara-
hona’s approach implicitly use the extension of an intersecting submodular function
to a fully submodular function called ‘Dilworth truncation’. Dilworth truncation was
clarified in general by Lovész (1977) and was algorithmically worked out by Frank
and Tardos (1988). The present algorithm is enlightened by a knowledge of these
results on the Dilworth truncation and a network flow method for computing an
underlying fully submodular function based on Picard and Queyranne (1982) and
Padberg and Wolsey (1983). Moreover, the here presented new ideas of combining
these methods and reducing them into some simple graph-theoretic steps result in
an algorithm that has the best asymptotic worst case complexity, the same as (Baiou
et al. 2000). It is probably also the simplest, both conceptually and in the use of
computational resources of the implementation, The sophisticated ingredients were
necessary for finding the right solution, but we did not need to make explicit use
of them. It consists of a greedy algorithm with » steps on the vertices of the graph
where the steps are max-flow-min-cut computations on graphs from 3 to at most
n + 2 vertices and very elementary manipulations on graphs. This can be seen as
a greedy algorithm on a polymatroid indexed by the vertices of the graph where
the rank oracle can be computed with network flows, and the whole procedure can
be discussed in fully elementary graphic terms. The results of Barahona (1992) and
Baiou et al. (2000) have already a vertex-centered framework but in a technically
more complicated primal-dual context.

Let us finish this introduction by summarizing various polynomial algorithms
for graphic submodular function minimization. We enumerate eight such algorithms,
without mentioning possible smaller variations of each:

1-3. The three methods handling general submodular functions: one using the ellip-
soid method and two recent combinatorial algorithms (Grotschel et al. 1981,
1988; Schrijver 2000; Iwata et al. 2001; Iwata 2002).

4. Cunningham’s testing membership algorithm (Cunningham 1984) that sharp-
ens Edmonds’ matroid partition algorithm, to minimize the sum of a matroid
function and of a linear function in stron gly polynomial time.

5. Grétschel, Lovdsz and Schrijver’s variant of Khachian’s linear programming
algorithm (Grétschel et al. 1981) proving the equivalence of optimization and
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separation, where we plug in the subroutine PQPW for separation. (PQPW is
explained in Sect. 17.2.2.)

6.  Cunningham’s ‘Optimal Attack’ algorithm (Cunningham 1985). This algorithm
needs to solve | E| maximum flow problems on a graph with | V| + 2 vertices.

7.  Barahona’s ‘vertex-sensitive’ algorithm (Barahona 1992) needs to solve at most
| V| maximum flow problems on a graph with | V| + 2 vertices.
Another version of this algorithm proposed by Baiou et al. (2000) consists in
solving |V| maximum flow problems but on graphs which have, at iteration i,
exactly i + 2 vertices.

8. The algorithm of Sect. 17.2.3 solving |V | maximum flow problems on graphs
which have, at iteration i, at most i + 2 vertices (but in average much less).

The last two methods implicitly use Frank and Tardos’s algorithm for ‘truncat-
ing’ an intersecting submodular function (Frank and Tardos 1988) with a variant of
PQPW (cf. Sect. 17.2.2).

In Sect. 17.2 we explain our approach and solution of the problem and restate
several “classical” ones; in Sect. 17.3 we consider a few sample applications.

17.2 Solution

In this section we solve graphic submodular function minimization. In the first two
subsections we provide the two main ingredients: the inductive step of extending
a solution from the smaller graph that arises after the deletion of a vertex. and the
known graph-theory procedure needed to execute this extension. The last two sub-
sections make clear the complete algorithm and explain the origins of its ingredients.

17.2.1 Extension of a Solution

In this subsection we prove two theorems: the first is showing how a given graph G

with weight function w and any set of edges maximizing (OC) for G minus a vertex,

may be completed so that it maximizes (OC) for the graph G itself; the second shows

how the optimizing set of edges changes if the wei ght of only one edge is increased.
The following lemma is an easy consequence of the (SUPER) property.

Lemma 2.1. Let G = (V, E) be a graph and G' = (V,E") (E' C E) an arbitrary
subgraph of E. Let F' C E(G') be an optimal solution of (OC) for G'.
There exists an optimal solution of (OC) for G which contains all edges of F'.

Proof. We first remark that the restriction of fa to the subsets of edges of G is equal
to fgr, so we can simply omit the subscript.

Let F be any optimal solution of (OC) for G. By the (SUPER) property one has
in G:

F(FUFY+ f(FNF) > f(F)+ f(F).

Since F U F' € E(G), F' € E(G'), and F, F' maximize f in G and G’
respectively, we have f(F U F') < f(F), F(FNF) < f(F"), and therefore we
have equality throughout. Now we see that F U F’ satisfies the conclusion. O

|
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As a consequence of Lemma 2.1 we can obtain an optimal solution F* for G by
adding edges to F’. Each connected component in G(F*) will be either an element
of P or the union of at least two elements of Pp:. The next lemma shows how
the value of a partition is affected when a subset of connected components are put
together.

For U € V(G) we introduce the usual notation §(U/) := (U, V \ U) for the
set of edges with exactly one endpoint in U/; in directed graphs 6(U) will denote the
set of edges leaving U. For W € P we will denote by (W) the set of edges of G
joining vertices belonging to two different sets in W),

Lemma 2.2. Let P and P’ be two partitions of V such that P = (P’ \ W) U 1) =
X € W) for some W C P'. Then

86(P) = g6(P) — (IW| -1 - w(d(W))).

In particular, if P! is optimal then W] —1—w(EOW)) > 0, and if P is optimal,
then [W| — 1 — w(s(W)) < 0.

Proof. Replacing in P the sets of W/ by their union decreases the cardinality of P by
[W| — 1. On the other hand let A and A’ be the sets of edges induced by the classes
of 7 and P’ respectively, A = A’ U §(W) and so the weight of the edges increases
by w(8(W)). The equality is then proved and the rest follows immediately. O

We will now use the above lemmas for proving the next two theorems.

Theorem 2.3. Let G = (V, E) be a graph with weight function w on the edges, let
x be a vertex of G and let G' = (V, E') be obtained from G by deleting all edges
incident to x. The edges of G’ keep their weight. Let F' C E(G') be optimal for fe.
For any W* C Pps containing {x} and minimizing |W| — 1 — w(d(W)) among all
subsets W of P+ such that {x} € W, the set F* — F' U 8(W*) is optimal for fc.

We observe that, since x is an isolated vertex in G', the subset {x} is an element
of Prr and F” is also optimal for G \ x.

Proof (of Theorem 2.3). By Lemma 2.1 we know that there exists F* optimal for fa
which contains F’. Let W C Pprr such that W = Ux,ew X is an element of Pps.
If W doesn’t contain {x} then, since F” is optimal for fg;/, we get by Lemma 2.2 that
IW| =1 —w(8(WV)) > 0 (this value is the same in G and G’). On the other hand F*
is optimal for f;; and therefore W] —1—w(8(W)) = 0, but then F* \ (W) is also
optimal for f;. Hence there exists an optimal solution F* for fg; containing F’ and
such that any element of P+ not containing x is already in Pp.

So any W* C P containing {x} and minimizing [W|—1— w(8(WV)) among all
subsets W of P such that {x} € W will provide an optimal solution F’ U §(W*).
(Notice that this minimum is < 0 since for W= {{x}} we get0.) O

At this point we see that any way of finding an optimal W* will provide a con-
structive algorithm for getting an optimal solution of (OC): we start with a solution
for a small subgraph (for example a one vertex subgraph) and then add the vertices
one by one, computing at each step an optimal solution. By Lemma 2.1 this can be
done by extending the solution of the previous iteration.

4
the |
does
thes:
X1,
whe
{5
age (
and
of vé
spon
of sh
W] -
mini

T
augni
Theo
e =]
any e

for fi
we

Proof
w(e),
that £
nplim
in the

17.2.2

Given
define
denote
letters
functi

Iti
given |
that b(
the prc
or Pad
below |

We
graph
called
oriente



17 Graphic Submodular Function Minimization 371

Assume we are under the conditions of Lemma 2.1 and let {x}, X1,..., X be
the pairwise disjoint sets of Pr. We remark that the value |W| — 1 — w(§(WV))
doesn’t depend on the subgraphs induced by the subsets X; in W, so we may ignore
these and work in a possibly smaller graph. More precisely: the result of shrinking

X1, ..., Xy in G is the graph shr(G) = (Vinr, Eshr) such that Vi = {x, x1, ..., x}
where x1,...,x; are distinct new vertices, and the function shr : V U E —
{x,x1,.... %} U Egy is defined by shr(v) := x; if v € X; and shr(x) := x; the im-

age of an edge is defined only for e with extremities a and b such that shr(a)  shr(b)
and shr(e) = shr(a)shr(b); edges keep their weight, that is wgy (shr(e)) = w(e); sets
of vertices or of edges are replaced by the image sets. There is a one to one corre-
spondence between the subsets W of Py containing {x} and subsets W of vertices
of shr(G) containing x and for any such W = shr(JV) one has |W|—1—w(§(W)) =
W[ — 1 — wshr (Eshe N (W x W)). So W will be optimal if and only if W = shrQA)
minimizes |W| — 1 — wgne(Eshr N (W x W)).

The following theorem follows also from Lemmas 2.1 and 2.2. It is useful for the
augmentation problem that will be considered in Sect. 17.3.

Theorem 2.4. Let G = (V, E) be a graph with weight function w on the edges, let
e = xy be an edge of G and let w' such that w'(e) > w(e) and w'(f) = w(f) for
any edge [ # e. Let F C E(G) be optimal for fG .. Ife € F then F is also optimal
for fou. If e ¢ F then for any W* minimizing |W| — 1 — w/(§(W)) among all
W C Pr such that x € UX,EW X, the set F* = F U §(W?*) is optimal for fg .

Proof. Clearly we cannot expect the optimal value to increase more than w'(e) —
w(e), so the case when e € F is trivial. Assume now that e ¢ F. It is then obvious
that F is optimal in G’ = G \ e. So, by Lemma 2.1 we know that there exists an
optimal solution F* of fg ., which contains F and we can then conclude exactly as
in the proof of the previous theorem. 0O

17.2.2 Computing the Oracle

Given a graph H with weight function w on the edges and W < V(H), we can
define a vertex-function b(W) := by ,(W) = |W| — 1 — w(E(W)), where E(W)
denotes the set of edges of H with both extremities in W. (To avoid confusion, some
letters (like /) denote functions on the vertices, and some other letters (like w) denote
functions on the edges.)

It is clear from Theorem 2.3 that a solution to the following problem solves (OC):
given (H, w) and a vertex x € V (H), find a subset W* of V (H) containing x such
that b(W*) = min(b(W); W C V(H),x € W). Luckily, precisely this variant of
the problem is directly solved as a key subroutine in Picard and Queyranne (1982)
or Padberg and Wolsey (1983), using a network flow model that will be described
below and that will be referred to as POPW in the sequel.

We first give (or remind) some definitions and well-known facts. Given a directed
graph and a subset X of its vertices, 8(X) denotes the set of arcs leaving X, and is
called a cur, if s € X, t ¢ X itis an (s, t)-cut; §(X, Y) denotes the set of arcs
oriented from X to Y. A function ¢ of nonnegative value on the arcs of a directed
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graph is called a capacity function. If F is a set of arcs then ¢(F) = Zs’e}’-‘ e(e).
A network is a directed graph with capacity function. A first efficient algorithm for
finding the minimum capacity of an (s, #)-cut is by Ford and Fulkerson (1956) (see

Schrijver 2003 for the complexity)—very efficient versions are known
(Ahuja et al. 1993),

We state now the algorithm,
PQPW(H, w, x),
INPUT: Arbitrary graph H, w : E(H) — (0, 1), where (0, D={teRrR
1}, x € V(H).
OUTPUT: W* C V(H) so that x € W* and B(W*) := by, (W*) = [ W% [
w(E(W*)) is minimum under the condition x € W*,

by now, see

:O<I<

The first three steps describe the construction of a network (D,c)=N (H, w, x)
that will be associated to H, w and x:

1. V(D) :=V(H)U {s, 1} where s,  are distinct new vertices;
2. To each edge uv ¢ E(H) we associate the arcs (u,v) and (v, u) of capacities

c((u,v)) = c((v, u)) = ,zlw(:.w). To each vertex y e V(H) we associate the
arcs (s, u) and (u, ).
3. Define for all 4 V(H):

1
p(u) = Z c((u,v)) = 5 Z w(uv),

uEl"(H).uL‘EE(H} veV(H), nveE(H)

and then ¢((s, u)) := pu), e((u, ) = 1.
Note that Z“E],“._“ pu) =w(E(H)).

4. Determine in the directed graph D with the capacity function ¢ a set § C V(D)
sothats, x € S, ¢ & S8, and c(8(9)) is minimum. Return the set W* B AN )

END;

The problem that has to be solved in Step 4 is a minimum cut problem in a graph

with given nonnegative capacities: s, x € W* can be enforced by contracting sx or
putting an oo capacity on it.

Theorem 2.5. The output of POPW(H, w, x) is W* € V(H) containing x and min-
imizing b(W*) under this condition. This optimal value can be computed by one
minimum cut computation on D.

The proof of this theorem is a direct consequence of the following lemma (using
the notations of the algorithm):

Lemma 2.6. The value c(5({s} U W)) — biw(W) (W S V(H)) is a constant inde-
pendent of W.

Proof. Let W € V(H). Then ({s} U W) is an (s, 1)-cut of N(H, w, x) and we
prove:

i

J
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c@Es}UW)) = |W|—w(E(W)+K =b(W)+ K + 1. Cum)

where K := ¢(8(s)) = w(E).

Indeed, let us see how the capacity of the cuts changes if we start with the set {s)
inducing an (s, 7)-cut of capacity c(8(s)) = K and then ‘add’ to it the vertices of W
one by one:

When we add v to the side of s, the edge sv of capacity p(v) disappears, and
the edge vr of capacity 1 appears, whence the change corresponding to such edges is
1 — p(v), and

D 1= p) = |W| — w(EW)) — Z w(xy).

vew xyeE(H),xeW, yg¢W

B =

On the other hand the contribution of the arcs between W and V (H) \ W is clear, at
the beginning it is zero, and at the end it is:

c(W,V(H)\ W) =

Z w(xy).

xyeE(H),xeW, yéW

SR

The change comparing to K is provided by the sum of the two contributions.
which is |W| — w(E(W)). 0O

Notice that Lemma 2.6 is verified for any network obtained from the one in the
algorithm by changing the capacities of the arcs from the source s and to the sink ¢
in such a way that c(u, t) — c(s, u) = 1 — p(u) for every vertex u.

Notice also that PQPW can be easily generalized to minimize any modular shift
of b, that is, to minimize b + m where m is an arbitrary modular function on the
vertex set. The special case m(W) := |W| (W € V) worked out above is just a
particular choice of a modular function. One only has to set c¢(u, 1) := m(u) instead
of 1 in Step 3. The minimization of b+ m solved by PQPW for arbitrary m is exactly
the ‘oracle’ that Frank and Tardos’ truncation algorithm needs for ‘truncating b’, see
(Frank and Tardos 1988), p. 526, remark. Our algorithm is a concatenation of the
truncation algorithm combined with PQPW, with an elementary graphic solution of
the truncation algorithm using new graphic ideas.

17.2.3 The Algorithm

In this section we state the algorithm solving the GSM problem, still in the OC
form.

At each iteration a subset U € V and a partition P of U will be at hand. In Step 0
We give trivial initial values: in Step 1, we choose an arbitrary vertex u to be added
t0 U and through the following steps we compute a subset VW of P U {u} providing a
new partition of U U {u}.

OC algorithm

INPUT: A graph G = (V, E), and a weight function w: E —» (0, 1).
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OUTPUT: A partition P* optimizing (OC): the set A* of edges induced by the sets
in P* maximizes { fg,w(A) := cg(A) + > .o w(e) : A C E}.

0.U:=0,P:=4.
Do n times consecutively Steps 1 to 5, and then define P* = P:

1. Choose avertexu € V\U.

2. Define H and wy as the result of shrinking the classes of P in G(U U {u}) with
weight function w restricted to the edges of G(U U {u}).

3. Call PQPW(H, wg, u). Suppose it outputs the set W* = {u, x1,...,x¢} C
V (H) where each x; is a vertex of H corresponding to a set X; € P.

4. Define R :={u}UX;U---UX;

5. Redefine U and P: U :=U U {u}, P := (P\ {X1, ..., Xk }) U{R};

END.
Remarks.

— Note that W* can be equal to {u}.

— The graphs H can also be constructed iteratively with only one shrinking in each
iteration, by adding u and then shrinking the set W*.

— The choice for u is completely free; this freedom could be used for making the
computations simple.

— Since fg,y is a supermodular function (on the edges) we know that there exists a
unique minimal optimal solution and a unique maximal optimal solution. Choos-
ing in our P Q PW algorithm a minimal (respectively maximal) minimum (s, 7)-
cut we will obtain a minimal (respectively maximal) optimal solution. These min-
imum (s, t)-cuts are easy to obtain by starting from s (respectively 7).

Theorem 2.7. The output P* is an optimal partition for (G, w).

Proof. At step 0, P := @ is an optimal solution for the subgraph of G induced by
U := (. Assume now that P is an optimal solution for the subgraph of G induced
by U, and show that after applying steps 1 to 5 the new partition is optimal for the
subgraph of G induced by U U {u}. It is clear that P’ = P U {{u}} stays optimal
when adding the vertex u but no edges. From the preceding chapter we know that
W* = {u, x1, ..., x;} is a subset of vertices of H containing u minimizing by, v, .
But H and wy are obtained by shrinking the classes of P’ in (G(U U{u}), w), hence
W = {u, X1, ..., X;} is a subset of P’ minimizing [W| — 1 — w(8(W/)) and by
Theorem 2.3 the partition (P \ {X1, ..., Xz}) U {R} is then optimal. O

Notice that the algorithm consists merely of n — 1 network flow computations
and n — 1 shrinking. Our approach looks lucky in the sense that the network flow
model is called for a small number of vertices: in the beginning because the number
of considered vertices is small, and at the end because hopefully many vertices are
identified. Moreover we don’t need computing ‘primal solutions” which are present
in an essential way in the previous algorithms of the same complexity and so the
capacities of the networks are not affected by the change.
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17.2.4 Further Explanations
As already noticed, we can rewrite (OC) as:

IP|
Maximize § g(P) = [P| + Zw(E(V,—)) SRSV Vip|} is a partition of V

i=]

Now maximizing g is equivalent to minimizing n — g (P), moreover, noticin g that
n—|Pl= Z{E'l(IV,'I — 1) we finally get the following formulation of our problem:
[P
Minimize § > "(IVi| — 1 — w(E(V)))) : P = [V, ... Vipy} is a partition of V
i=1
(DUAL)

Recall b(U) = bg,(U) = |U| -1 — w(E(U)); (DUAL) is in fact ‘an integral
solution to the linear programming dual’ of

Maximize E Xy under the constraints
veV

Z_rﬂ <b(U) foreveryUcCV, U £ .
vell

If x € R satisfies these inequalities we will say that it is feasible. Note that x is
then nonpositive! (The term |U | could be deleted here, this causes a modular shift
which influences (DUAL) only with the additive constant n; however, it is exactly
the modular shift »(J) that plays a role in the formulation (FOREST) considering
subsets of edges, explained below.)

The algorithm we developed determines an optimal dual solution to this linear
program. Another way of looking at the problem, that provides some insight and
another way to solve it (even if a less efficient one) is through Edmonds’ forest
polytope:

Let G = (V,E)bea graph, w € (0, 1)’5, and for F C E define xg(e) be 1 if

e € F and 0 otherwise. According to a basic theorem of Edmonds (1970) the forest
polytope defined as:

conv(xr : F is a forest)
={x € R* :x(E(U)) < |U| - c6(U), x 2 0, (U S V(G))),
(FOREST)

is a particular polymatroid. Hence it has integer vertices (the forests of G), and the

defining system of inequalities has an integer dual solution for any integer objective
function.

Note the following:

(i) If cG(U) > 1 then the corresponding inequality can be straightforwardly writ-

ten as the sum of ¢ (I7) others with cG(-) = 1, so the only essential inequalities
in (FOREST) are those with ca(D)=1.
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(1) Edmonds (1970, 1971) proved (see also Schrijver 2003) that polymatroid jn-
tersected with upper bound constraints is still a polymatroid, and therefore it
corresponds to a TDI system.

(iii) The submodular function %, associated to the polymatroid defined by the cop-
straints of (FOREST) plus the additional upper bound constraints x < w.is
such that i({e}) = w(e) forall e € E. Let us consider the objective function
max ), p X, on this polymatroid. For each ¢ € E, there is a dual variable y,
corresponding to the upper bound constraint x, < w(e) and, for each U such
that c; (U) = 1 there is a dual variable Yu corresponding to the (FOREST) con-
straint on /. By (ii) there exists an optimal dual solution with 0 — 1 coordinates
and it is not hard to check that its value is equal to the minimum of (DUAL )=k
the sum of the upper bounds of all edges.

(iv) The new right hand sides are easy to express: 1(A) = max {D ech Xe : xisin
the forest polytope (FOREST), x < w}, (A C E). Similarly to (iii), the dual
linear program provides a formula for computing & from b, and this problem js
clearly the same again as GSM (“restricted to A”), so the greedy algorithm does
not seem to be easily executed unless a good way of computing recursively
occurs.

Such a way exists, but first the “graphic” property has to enter the game. Since
the constraints are associated to edge-sets induced by vertex-sets U, we can di-
rectly associate the new right hand sides to these vertex-sets. and this is what we
did when we defined b(U). The function b however is negative on the empty set,
so the corresponding polymatroid would be empty. If we set b() := 0 then the
new function is submodular only on intersecting pairs. Frank and Tardos (1988)
compute (the rank oracle of) a new fully submodular function (which must be 0
on the ¢) that defines the same polyhedron, with an appropriate implementation
of the greedy algorithm. In our case this corresponds to gradually growing U
|| and computing “h(E(U))".
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}' P Algorithms for graphic submodular function minimization (Cunningham’s, Bara-
‘ L hona’s and ours) can be all considered to be combinations of this greedy algo-
! :gu rithm with a network flow model. We hope that by realizing this, and working
. out the details in a graphic way, the present paper provides an elementary, effi-
L cient and self-contained presentation of such an algorithm.
:‘; (v) In order to decide whether a given vector w € RE belongs to the forest poly-
4 tope or not it is sufficient to know whether the minimum of 5(U) = |U| T
m: I — w(E(U)) is nonnegative for all U, §J # U C V or not. This problem is
x: solved by PQPW. Using the solution as a separation subroutine for Grotschel,
U‘B Lovdsz and Schrijver’s equivalence of separation and optimization (Grotschel
E‘:\" etal. 1981), and using that a dual optimum can also be computed in polynomial

time see (Grotschel et al. 1988), this provides another way (mentioned in ‘5. in
Sect. 17.1) for solving our problem.

In short, our problem (DUAL) can be viewed as follows: one can separate from
Edmonds’ polytope efficiently in a combinatorial way (with PQPW) but it 1s not
trivial to optimize on it combinatorially. However, this task can also be achieved
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combinatorially in a much sim
function minimization, and thi
(GSM).

The algorithm has been implemented by our physicist coauthors (Anglés d’ Auriac
et al. 2002; Angles d’ Auriac 2004). Using the push-relabel algorithm (Goldberg and
Tarjan 1988) for computing minimum cuts into PQPW, they were able to deal with

grids of size 512 x 512 (Anglés d’Auriac et al. 2002), that is, more than 250 000
vertices.

pler and more efficient way than general submodular
s is exactly graphic submodular function minimization

17.3 Applications
17.3.1 Potts’ Model

In this section we recall the Potts model (for a review of the huge amount of work
devoted to it see Wu 1982) and show why the order of magnitude — or under a re-
strictive condition the approximate value — of the partition function is determined by
the minimum value of the submodular function GSM if the number of ‘states’ tends
to infinity. The partition function is an important quantity that encodes the statistical
properties of a system in thermodynamic equilibrium.

A lattice of spins is given at each site of which lives a variable. Each variable
01, ..., 0, (n € N) can take values in a given set Z, := {0, ..., q—1}, g € N. Pairs

of neighboring sites on the lattice are called bonds. We denote the number of sites
by 7, and the number of bonds by m.

Each configuration o = (@1, ..., 0p) has an energy
E(©) =) Kijbo,o;, (1)
ij

where o; € Zg4, the sum runs over all bonds ij, Kij € Ry is a given non-negative
weight of bond ij, and 8,5 is the Kronecker symbol (1 if g = b and 0 otherwise).
(A lattice is a graph, sites are vertices, bonds are edges.) The aim is
approximate the partition function

Z(K;; :ij is abond) := Zexp(E(or)) = Z nehf‘fa“""f', (2)
leg a Ef

o compute or

Where the summation runs over all assignments of values o := (oy, . ... on) € Zj,
and the product over all bonds ij.

. We follow (Juhész et al. 2001). Note that eX% — | + (X — 1) for 5 € {0, 1):
Introduce v;; = ¢Xij — | ang expand the product of sums:

Her_f‘S“,ﬂj = H(] g (ffK'-"" == 1)5ﬂjgj_) = Z “ Uf‘j‘SU,O’j‘i
ij L

if L ijel

Where the summation runs over all subsets of bonds I, Substituting this to (2) we
get:
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Z(K,'J,‘ :ij is abond) = ZZ I—I Ur',iacrfr:j = ZZ H vi_,"a‘cr,nj

o L ijeL L o ijel

 Tim c(L) -

=24 [T s, 3)
L ijeL

where the sum runs over all subsets I, of bonds, and where ¢(L) is the number of
connected components of I, on the set of all sites, counting
among the components. (By convention if L is empty then []
the last equality by counting the number of different o — (01, ..., 0y) for which the
product is nonzero; since it is nonzero if and only if o (i) = o () for every =/
that is, if and only if o is constant on every connected component of L, al] possible
o can be given by choosing an element of Z, for every connected component of [,
independently. Therefore we have exactly q“") such o

Note that this sum has 2™ terms, and that in (3) g does not need to have an inte-
ger value. (This provides a way of defining the Potts model for non-integer values.)

Clearly, K;; > 0 is equivalent to vij = 0, and we can introduce a new set of variables
o with

also the isolated sites
ifel Vij = ]) We got

Vi = g%,
and the partition function becomes
Z=Y gWtlyeay, 4)
L
Finally one introduces the function
FLy=c)+ ) ey (5)
ijeL
so that

Z:Zq"”‘). (6)
L

As pointed out in Juhdsz et al. (2001), while g tends to infinity the sum in (6) is
dominated by the maximum value of g7 and the order of magnitude of the parti-
tion function depends on the maximum of the function S that we have determined.
(The asymptotic value of the maximum depends also on the number of optimal so-

lution; nevertheless we have this optimum in the important case when the optimum
is unique.)

17.3.2 Optimal Cooperation, Optimal Augmentation, Strength and
Reinforcement

Cunningham (1985) studied Graphic Submodular Function Minimization in the con-
text of Optimal Attack and defense of a network. Each edge has strength s(e) which
is a measure of the effort required by an attacker to destroy it. On another hand there
is a benefit b for each new “disconnection”. The goal of the attacker is to destroy a
subset of edges A minimizing s(A) — (cc(E\A)—1)b. This “Optimal Attack'tprﬂh-
lem is equivalent to Optimal Cooperation but with a ‘complementary’ viewpoint.
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17 Graphic Submodular Function Minimization 379

In the following we go further towards other applications mentioned in Cun-
ningham (1985), and again, we provide a fully graphic interpretation for the sake of
simplicity and practical efficiency. We will follow the language of “Optimal Coop-
eration”.

The Augmentation Problem

Let us adopt the viewpoint of an employer ready to pay to stimulate the coopera-
tion between researchers, by increasing the benefits of some pairwise cooperations
(for instance with primes or rewards), for keeping the whole working group together.
(The recent policy of the authors’ employer, the CNRS, encourages indeed the cre-
ation of big institutes.) A cost function k E — R, expresses the cost of a unit
Increase in sponsoring a cooperation.

We say that (G, w) (or w) is strong if for the weight function w, {V}is an optimal
partition (for OC), and we can now state the problem more formally.

Augmentation Problem

Input: A graph G = (V, E) with weight and upper bound functions w,u: E —s
Ry, w <u <1, cost function k : E —» R;.

Output: A new weight function w’ : F —s R4, w < w' < u, such that (G, w') is
strong, and )", k(e)(w'(e) — w(e)) is minimum; or a certificate of infeasibility.

If u := 1 everywhere, that is, if there are no upper bounds, the augmentation
problem is called unconstrained otherwise constrained.

In some sense we already know a solution for this problem: {V} is an optimal
solution for (G, w’) if and only if for the all 1 objective function, (FOREST) com-
pleted with the inequalities x(e) = w'(e) does not have a dual solution of smaller
value than | V| — 1,

This means exactly that, y, := Oforalle E,yy :=0forallU c V,U £V,
and yy :=1is an optimal dual solution. Clearly, this holds if and only if there exists
a primal solution of the same value |V| — 1, that is, if and only if the polymatroid
(FOREST) has a (noninteger) basis w” < '

For (G, w') the set {V(G)} is an optimal solution of (DUAL) ifand only if (FOR-
EST) has a basis w" <w'.

We will say then that w' contains a basis. Weight functions w’ which contain
a basis form a “contrapolymatroid”, that is, a set of vectors closed under adding
nonnegative vectors, and such that the (coordinatewise) minimal elements satisfy
the polymatroid basis axioms (Schrijver 2003). Equivalently, a contrapolymatroid is
the set of nonnegative vectors satisfying the inequality system x(U) > g(U) for all
U C E, where g 1s a given supermodular function on 25,

These remarks lead to two possibilities for solving the augmentation problem.
Both require to replace each edge e by two parallel edges e’ and e”: ¢’ has cost 0,
Weight 0 and upper bound w(e), ¢” has cost k(e), weight 0 and upper bound u(e) —

W(e). We consider the polymatroid (FOREST) with the upper bound constraints as-
Sociated to this new graph.
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The first possibility is to start from the all 0 vector and to increase the vari-
ables one by one according to the polymatroid greedy rule (in increasing order of the
costs). If at the end, the sum of the variables is equal to |[V| — 1 then we increase
the weight of each edge e by the value of the variable associated to e”’; otherwise
the problem is not feasible. Notice that this leads to an algorithm similar to the one
of Cunningham (1985), but there is no need to introduce a new polymatroid like in
Cunningham (1985).

The second possibility is to use that vectors containin g a basis form a contrapoly-
matroid. If the vector with coordinates Yo = w(e), x. = u(e)—w(e) foreach e in E.
is in this contrapolymatroid then decrease the coordinates greedily (in decreasing or-
der of positive cost) according to the contrapolymatroid greedy algorithm (Schrijver
2003); else the problem is not feasible.

We rather work out a completely graphic version that extends naturally the ap-
proach of this paper.

Graphic Augmentation Algorithm
Input and Output: see above.

0. Give the initial value w’ := w. Compute (using the OC algorithm) a maximal
partition 7 such that gg ,(P) is maximum. (That is: P is optimal but any par-
tition obtained from P by merging elements of 7P is not. There exists a unique
such partition, see the Remarks after OC al gorithm)

If 7 = {V}, then STOP and output w’, otherwise all edges induced by the
classes of P are marked fixed, shrink all the classes of P.
H is assigned to be the arising graph, E(H) C E(G) (contraction-minor).

1. Let e = xy be an edge of H that is not fixed (in particular its endpoints are in

different classes of P) such that

k(e) = minfk(f) : f € E(G), f is not fixed).

The restriction to H of the current w’ will be denoted by w" H-

2. Set w'(e) := u(e), run PQPW(H, Wiy, X) to get the maximal output S, €

V(H).Letb := —b”_,,.lf” (Se). Fix e, and

— Incase S, # {x}:
Set w'(e) := u(e) — b. If Se = V(H) then STOP and output w’; else fix
e and all other edges induced by S,, shrink Se in H, redefine H as the
resulting graph and GOTO 1.

— - Incase 8§, ={x}:
If furthermore every edge is fixed STOP and return the corresponding par-
tition of G as certificate of infeasibility, otherwise keep H and w’ and
GOTO 1.

END

The optimality of the algorithm (stated in the theorem below) relies on the fol-
lowing:
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Lemma 3.1. All along the algorithm, at the beginning of Step 1, the trivial partition
{{v} : v € V(H)} is optimal for the current w' in H, and the corresponding partition
of G is also optimal for (G, w'). Furthermore all these partitions have the same value
than the first one.

Proof. Indeed, just after Step O this is certainly true. We must show that this is true
at the end of Step 2 where w’ and H are redefined when considering the edge e.
By Theorem 2.4 we know that after shrinking S, in H, the vertices of the new H
correspond to an optimal partition for (G, w’) for w’ obtained from the previous
weight function by simply increasing the weight of ¢ to its maximum possible value
u(e). In the case where S, # {x} this may be true even for a smaller weight of e. The
value b corresponds to the gain of increasing the weight of e. A gain of 0 is enough
for us, and we decrease the weight of e to the minimum which makes it enter into
the partition. So, the new partition has the same value than the previous one. In the
other case there is nothing to prove since the partition stays the same. So the Lemma
is proved. O

Theorem 3.2. Ifthe algorithm stops with infeasibility, then all edges outside the par-
tition P* corresponding to the output have w'(e) = u(e). Otherwise, the algorithm
stops with w < w' < u where w' is strong, and kT(w’ — w) is smallest among any
strong w' satisfying these bounds.

Proof. As pointed out above, the validity of the greedy algorithm follows from the
fact that (FOREST) with upper bounds w’ is a polymatroid. It can also be checked
directly in terms of the graph.

If, at the end of the algorithm, H has only one vertex, then according to
Lemma 3.1, w’ is strong. If not, then w’(e) = u(e) for every edge not induced by a
class of the partition P* when the algorithm stops, and so this maximal partition has
a bigger value than {V} forany w’ < u. 0

In case of the unconstrained Augmentation Problem we get an algorithm which
has the same complexity as at most # minimum cut computations on networks of
decreasing sizes. Indeed, in that case, each time a new partition P’ is computed at
Step 2, its cardinality is strictly smaller than that of the previous partition P. Note
that the minimum cost spanning tree problem is a special case of the unconstrained
Augmentation Problem.

Extrapolating the success of the implementation of the OC algorithm in Anglés
d’Auriac et al. (2002) (solution for several hundred thousand variables) this version
of the reinforcement problem should also be efficient. However the advantages that
make our algorithm run quickly (the small size of the current graphs) cannot be
converted into a worst-case bound. The asymptotic worst case bound for the running
time of the unconstrained case is the same as that of Barahona (2006).

Unfortunately, in the case of constrained case, we may have to perform much
MOre minimum cut computations, m in the worst case, since we increase the weights
of edges one by one. For this problem, Barahona (2006) performs the computation
of a sequence of at most m minimum cuts with a time-complexity of only n times

e —————
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the complexity of one push-relabel algorithm, by trading work for memory space:
this algorithm uses a “parametric flow” technique (Gallo et al. 1989), which involves
keeping in memory n copies of the original graph. In our algorithm the number of
vertices of the different networks we use will decrease from n + 2 to 4, except if the
problem is not feasible, but this last case is easy to test by running the OC algorithm
separately with u as weight function. (If the maximal optimal partition is not {V}
then there exists no feasible solution.)

The reason for which we cannot use the parametric flow technique is precisely
the shrinking of subsets of vertices. However in case the weights have a small com-
mon denominator g, typical in the application in physics, we may use a similar
technique using “augmenting paths” instead of a “push-relabel” algorithm for com-
puting the maximum flows and as in Barahona (2006) the complexity of the algo-
rithm can be improved at the cost of a higher space complexity: during the Aug-
mentation Algorithm we maintain at most n networks N (H, w', x) of PQPW type
obtained from the initial one by shrinking subsets of vertices and increasing the
weights of some of the edges. We keep a feasible flow in each of these networks
and an (s, 7)-cut of weight n = |V| induced by V \ t. Then the value of the max-
imum flow will never exceed n and so the algorithm will perform at most ng aug-
mentations in each network and we get a complexity of O(n’mg). The way we
construct the networks is as follows. At Step 2, we increase the capacities accord-
ingly to w’(xy) := u(xy). Obviously the flow we had before is still compatible. In
case S, does not contain y we just need to increase the capacities similarly in all
current networks. In the other case we discard all networks N (H,w’, v) such that
veS,\y In NH,w',y) we simply shrink S, into y, and keep the same flow.
For all other networks N(H, w’, v) v ¢ S, we do the following. We shrink S, in y.
We set c(sy) = [Sel — 1 + ¥ sper aes, ves, W'(@b)/2. Since S, was not a set of
the previous maximal optimal partition we have [S,| — 1 > ZH,)EE_”_,}E&, w'(ab)/2
and so the flow obtained by setting f(sy) := ZabeE.ae& f (s, a) is a feasible flow.
Notice that the new networks are not exactly as defined in PQPW but the condition
c(a, 1)—c(s, a) = 1— p(a) is fulfilled for every vertex a, which is sufficient. Another
improvement of the m minimum cut computations algorithm of Cunningham (1985)
is due to Gabow (1998) who proposed an algorithm computing a minimum-cost base
of a graphic polymatroid in time O (n%m log(n2/m)).

Strength

Cunningham (1985) defined the stren gth and the reinforcement of a graph—we trans-
late these into the “Optimal Cooperation language” and show how they can be com-
puted using graphic submodular function minimization and (constrained) augmenta-
tion.

Given an undirected graph G = (V, E) where each edge e has a nonnegative
strength s(e), the strength of (G, s) is defined as

o (G, s) := max(A : (G, s/A) is strong}.

(It is easy to see that the maximum exists.)
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17 Graphic Submodular Function Minimization 383

Cunningham showed that the strength of a graph can be computed by solving at
most n Optimal Cooperation problems, that is, after executing n GSM algorithms.

Indeed, let o be the strength of the graph G = (V, E) with strength func-
tion s on the edges. By definition of o we have fg/0(E) = fg.s/0(¥) and so
o < s(E)/(n—1). Soif E is optimal for the weights < o “s theno = s(E)/n — 1
and we stop. Else ¢ < s(E)/n — 1, that is, dividing the weights by s(E)/n — 1
some edges are too light to enter into an optimal solution and the maximal optimal
solution A is strictly included in E. By Theorem 2.4 we know that while the weights
are augmented, the edges of A will stay in an optimal solution, so we can simply
shrink all sets of P(A) in order to get a new graph G’ with strength function 5|6
of the same strength as G, s and we repeat this procedure until £ becomes optimal.
Notice that |V (G')| < |V (G)| since else E would be optimal; and so we will stop
after solving at most n Optimal Cooperation problems. This algorithm performs vir-
tually the same actions as the one of Cunningham except that once again the sizes
of the problems to be solved will be decreasing. Similarly to “parametric flow” for
computing the strength (Gusfield 1991; Cheng and Cunningham 1994), we can keep
at most n networks with increasing capacities and feasible flows, but in that case a
small common denominator of the capacities is unlikely. However we can avoid this
problem by solving the generalized Optimal Cooperation problem where the benefit
of a connected component is a constant B which may be different from 1, that is

Maximize{f(;_u,‘g(A) = Bcg(A) + ) _w(e), AS EG).

ecA

By dividing the weights by B we are lead to the usual Optimal Cooperation prob-
lem, but we can also solve it directly applying PQPW to a modular shift of b (as
in Cheng and Cunningham 1994). In that case we obtain an algorithm of complex-
ity O(n*mBg). Gabow (1998) proposed an algorithm to compute the strength of a
graph in time O (n’m log(n®/m)) and space only O(m) (instead of O (nm) for the
other algorithms of the same complexity).

Let us finally check that our definition of the strength is the same as Cunning-
ham’s:

By definition (G, s) is of strength at least o if and only 1 + s(E)/o > c(A) +

§(A)/o forall A C E, thatis, if and only if 6s(E \ A) = o(c(A) — 1). it follows
lhdt

s(E—A
o (G, s) = min i(————z : A€ EelA) = 1.},
c(A) —1

Reinforcement

We consider now the minimum cost reinforcement problem:

Reinforcement
Input: A graph G with strength function s : E — R, cost function k : E — R,
k> 0 and upper bound function / > s on the edges, and o > 0.
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Output: A new strength function s’ : E —» N, s <s' <1, such that o (G, 5') > oy
and 3, k(e)(s'(e) — s(e)) is minimum; or a certificate of infeasibility.

Clearly, according to the definition, the reinforcement problem (G, s, 1, k, o)
can be solved by finding an optimal solution w’ of the Augmentation Problem on
(G,w= ni” U= Gi” k). Indeed, then s’ = w'oq is an optimal reinforcement. If there
is no solution for the Constrained Augmentation Problem, then no reinforcement
exists.

17.4 Conclusion

This is a thoroughly revisited version of the mathematical part of an article that
appeared on this problem in Journal of Physics A. It is completed here with full
details of the mathematical part of the paper, by more mathematical background, and
also new results concerned by the minimization of a graphic submodular function
like the problems of augmentation, strength or reinforcement.
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