Submodular Functions

Def: f:2> > IR issubmodularon 2>, if
f(X) + f(Y) = f(XNY) + f(XLY)

monoton submodular & VAcCB, xeS:
f(A U {x}) - f(A) = f(Buw {x}) - f(B)

1.) occurs often  2.) useful 3.) ‘can be played with’

MIN €2 MAX sz - hard

versions:  for machine learning, f(0)=0, mon, size k



Examples, special cases, connexions
rank of vectors In any vector space
In a graph the number of edges leaving a set of vertices
Minus the number of components of a set of edges
Maximum size of an acyclic graph (forest) on a given set of vertices
For k eIN and finite set S : min { k, the size of a subset }
Probability of the product of a subset of events

Total « Information in » a subset of random variables

Rank function of matroids
Many essential properties are reflected already in matroids:

Def: M=(S,r) matroid: r () =0,r monoton&submodular,r({s})=1,(s€S



Approx for submod max mon, size k, f(0)=0,

Algorithm (for sets of size k): (Nemhauser, Wolsey) Having X already,
WHILE |X|< k choose x that maximizes
(X' {x}) - f(X)

Y,
Lemma : f(X U {x}) - f(X) = (f(OPT)—f (X)) /k
Proof: Since mon: f(OPT) < f(OPT U X) <
<f(X) + k(f(X L {x}) - f(X) ) y

Let X' be what we found until stepi. Then
f(X¥) - f(X<1) >f(OPT) / k -f(X*1)/k, so
f(X%) > f(OPT) / k + (1 — 1/k) f(X*1)
f(Xk) > f(OPT) (1 - (1 —-1/k)%) = (1-1/e) f(OPT)



Matroids

M= (S, ¥) Is a matroid if
() De &

() Fe ¥ ,F
(i) F,,F, e

thatis, 52 O |

cF= Fe¥&
F, |

F/|<|F,| =>3eeFR\F;:
F, {e}e &

/

Def: F e & iscalledanindependent set.
The rank function of M is
r:2> >IN defined asr(X):=max {|F| : Fc X,F € &}

Exercise : Prove the equivalence with the previous def with rank
functions! Hint : This means that submodularity etc have to be proved,
and conversely ¥ should be defined from r and (i)-(iii) be proved.



Examples

representable

S = finite set of vectors over a field (IR or extensions orGF(q) ).
F family of linearly independent subsets of S.

graphic M(G):=

Let G=(V,E) be a graph, and S :=E
F := edge-sets of forests

uniform U,

|S|=n, & :=subsets of S of size at most r

Transversal matroids, Gammoids, ...



Operations

Contraction, deletion, dual; Nashwilliams sum :

M; = (S, &) M, =(S,, %))

M; NW M, isdefinedwith{F, UF,:F,e &%, F,e &, }

partition matroid : NW sum of uniform matroids;
often of rank 1



Circuits

Def: C family of (inclusionwise) minimal sets that are not independent

Proposition: (i) C,,C, € €,C,zC,
(iC;= C, e ,xeCinC,, 3C;e€:C; < C, nC,\{x}
/

Proof: r(C,) +1(C,) -1(Cy N Cy) = [Cy| - 1+[Cy| -1 |C; N Cyl =
=|CuCyl- 2

Exercise : Prove the other direction ! That s, define the
independent sets from circuits and prove their axioms (i)-(iii)
from the above axioms (i) — (ii).

So we can now take (i), (ii) as the definition of matroids with their



Bases
Let M=(S, &) be a matroid. Bisa base if Be &, |B| =r(S).

Set of bases : &

Fact : VB,,B,e®, Vxe B \B,

} Basis axiom
dy e B,\B, : B;\x)u{yleRB

Proposition: 3#0 is the set of bases of a matr < the Fact holds. J

Proof : 1.) =>The stated property holds. <=: ‘Effg‘l(\“j()’t?z: 5,
2.) There is unique possible matroid with base-set &.
3.) The uniquely defined set system is indeed a matroid FeEPeBBem

use the fact

So we can now take « Fact » as the definition of matroids !



Rank again and Span



Bases, continuation

Fact : VB,,B,e®, VxeB,\B,
dy e B;\B, : B;\y)ui{x}eB

Proposition: %#0 is the set of bases of a matr < the Fact holds.

Proof : => : Through the following property from the circuit-axiom:

Proposition: M= (S, ¥ ) matroid, Fe ¥, e € S\ F. Then:
either FU {e}e &
or F U {e} contains a unique circuit of M.

So we can now take « Fact » as the definition !

Corollary: {S\B: B € &% } also satisfies the basis axioms.



Dual Matroid

Def: 4ol Mj:‘- CS,@%MO@

:%%: %S\.Et &zi(éi;g)
Fact: v’*(%): X = @(5)‘“ V’{Sw))
S

Proof:




Planarity and Duality

circuits of G = circuits of M(G)

cocircuits of G = cocircuits of M(G)=

Inclusionwise min cuts of G*

M*(G) = M(G*)

Equivalently : Fis a spanning tree <
E\ F is a spanning tree of the dual graph

Euler’s formula: n—-1+ f—1 =m



Greedy alg for max weight indep

Greedy algorithm for a family of sets F <25:
If X;, ..., X, have been chosen,
let x.,, be such that {x,, ..., x,,;} € #, c(x,,) max

Theorem If € is hereditary, then the greedy algorithm finds the
optimum for any nonnegative objective function < #€ is a matroid.

J
Proof: => @D

<=

C@«‘) ~> The independence
RN "axiom (iii) contradicts
the choice of x,

We find : CQ‘/;) I

The opt: \CC%L) - .2 coqf‘)




If you can do it simple, make it complicated!

T%MCQWQ> (€ T e

E/K’. < (R) < ) EC@W@F‘

| x 20 =67
= .

— ECH
Proof: ' w., = = W T

Submodularity => Sets A with positive dual variables form a chain !
The F that we find satisfies: \F‘nuj:r@
VJCU:> 6\/ 7_,) r’nu
+ @/Q_-wj ]p N U 5+ [ dual
solution
+ W s U



The inverse of the duality theorem
Thhvv (Eo{,u@‘t/@&) : Mﬂgﬂf)a@h

= Ex@@s . X (A) —ér(@)?
// x 20




Matroid Intersection
Edmonds (1979)

Let M, and M, be two matroids, c:

(S,ry) and (S,r,)
(S,#,) and (S,%,)
maximize {c(F) : Fe¥,N¥, }
2 disjoint spanning trees : M,and M, =M,
Two examples of cases :

2 disjoint spanning trees : M;and M, := M,

Bipartite matching W |I\\/|/|1
2

Both are partition matroids: sums of uniform matroids on stars



Matroid Intersection Theorem
How to conjecture a « good characterization » ?

We know : x € conv (y;: Fe&,) < x(A)<r (A) for all Ac S

maximize { |F| : Fe# &, }=? conv (y: FeF NF,)

max {1'x: x(A)<r. (A) (i=1,2) forall AcS}

Theorem (Edmonds 1979): Max [F| =min r; (X) +1,(S\X)

Fe¥ NF, XcS
wi —
L

ST O

N A S e SN 2
= . ( Y) T Vo (S\X) If |F|=r, (M) ?



Matroid Intersection Theorem

Generalization of bipartite matching
(of the alternating paths in the « Hungarian method »)

Proof of >: thatis, thereis Fand X with |F| =ry(X)+r,(S\X) .

We prove that the following algorithm terminates with such an F and X.

Algorithme d’intersection

What is the INPUT ? - ORACLE - rank, independence, etc

0.) Let : FeF,nF, maximal by inclusion (greedily)
C,el,

1.) Define arcs from
unique cycles :

C,eC,



Matroid Intersection Theorem

Algorithmic proof of the matroid intersection theorem

oo P

C,eC,

3.) Sources S:={x e S\ F, FU {x} € ,} Sinks T:={x € S\ F, FU {x}e %}

If SorTisempty ?

Find an (S,T)-path.

a.) If there exists one, let P be one with
inclusionwise minimal vertex-set
(equivalently, P is chordless).

X
b.) If there exists none, TN X =, where T\
X :={x € S: xis reachable from S} F



Matroid Intersection Theorem

exchange along an improving path

1661 yl y2 Fy3yk -

a.) If P={xy, y,X; ..X, YioX;1} is @ chordless path, then FAP € §,n &,
Apply the following to FU{x,} € &, , and FU{x,,,} € &,

Xl X2 X3 cee Xk
Lemma : M = (S, § ) matroid, Fe § , Xy, ..., X, & F

If vy, isinthe unique cycle of F, U x., B F
but y; ,J=i+l, k is not, then
(FN{Xp ey X }) Oy e, V1 €S Yi Y2 Ys..V

Proof: For k=1 true, and then use it by inductionto (F\ {x,}) v {y,}.



Matroid Intersection Theorem

No improving path : show that the solution is optimal

Let X:={x € S: xis reachable from S}

X
Lemma : Suppose b.): XNT=0, where T\
X :={x € S: xis reachable from S} . s

Then |F| =r; (X) +r,(S\X)
_ C,eC,
Proof : r; (X) = |F"X]|, because X < sp; (FX).
F
r,(S\X)= [F\X|, because S\ X< sp,(F\X). @ @

C,eC,



