Submodular Functions

Def:
$$f: 2^S \to IR$$
 is submodular on 2^S , if $f(X) + f(Y) \ge f(X \cap Y) + f(X \cup Y)$

monoton submodular
$$\Leftrightarrow \forall A \subseteq B$$
, $x \in S$:
 $f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B)$

1.) occurs often 2.) useful 3.) 'can be played with'

MAX My - hard

versions: for machine learning, f(0)=0, mon, size k

Examples, special cases, connexions

rank of vectors in any vector space

In a graph the number of edges leaving a set of vertices

Minus the number of components of a set of edges

Maximum size of an acyclic graph (forest) on a given set of vertices

For $k \in IN$ and finite set S: min { k, the size of a subset }

Probability of the product of a subset of events

Total « Information in » a subset of random variables

Rank function of matroids

Many essential properties are reflected already in matroids:

Def: M=(S,r) matroid: $r(\emptyset) = 0$,r monoton&submodular, $r(\{s\}) = 1$, $\{s \in S\}$

Approx for submod max mon, size k, f(0)=0,

Algorithm (for sets of size k): (Nemhauser, Wolsey) Having X already, WHILE |X| < k choose x that maximizes $f(X \cup \{x\}) - f(X)$

```
Lemma: f(X \cup \{x\}) - f(X) \ge (f(OPT) - f(X))/k
```

Proof: Since mon: $f(OPT) \le f(OPT \cup X) \le$ $\le f(X) + k (f(X \cup \{x\}) - f(X))$

```
Let X^i be what we found until step i. Then  f(X^k) - f(X^{k-1}) \ge f(\mathsf{OPT}) \ / \ k - f(X^{k-1}) \ / \ k, \, so   f(X^k) \ge f(\mathsf{OPT}) \ / \ k + (1 - 1/k) \ f(X^{k-1})   f(X^k) \ge f(\mathsf{OPT}) \ (1 - (1 - 1/k)^k) \ge (1 - 1/e) \ f(\mathsf{OPT})
```

Matroids

```
 \begin{aligned} \mathsf{M} &= (\mathsf{S}, \boldsymbol{\mathcal{F}}) \text{ is a } \boldsymbol{\mathit{matroid}} \quad \mathsf{if} \\ (\mathsf{i}) & \varnothing \in \boldsymbol{\mathcal{F}} \quad \mathsf{that is, } \boldsymbol{\mathcal{F}} \neq \varnothing \\ (\mathsf{ii}) & \mathsf{F} \in \boldsymbol{\mathcal{F}} \quad \mathsf{, F'} \subseteq \mathsf{F} \Rightarrow \mathsf{F'} \in \boldsymbol{\mathcal{F}} \\ (\mathsf{iii}) & \mathsf{F}_1, \mathsf{F}_2 \in \boldsymbol{\mathcal{F}} , |\mathsf{F}_1| < |\mathsf{F}_2| \Rightarrow \exists \; e \in \mathsf{F}_2 \backslash \, \mathsf{F}_1 : \\ & \mathsf{F}_1 \cup \{e\} \in \boldsymbol{\mathcal{F}} \end{aligned}
```

 $\begin{array}{ccc} \textbf{Def}: & F \in \boldsymbol{\mathcal{F}} & \text{is called an } \textit{independent set.} \\ & & \text{The } \textit{rank function } \text{ of M is} \\ r: 2^S \rightarrow \text{IN } & \text{defined as } r(X) \text{:= max } \{|F|: F \subseteq X, F \in \boldsymbol{\mathcal{F}}\} \end{array}$

Exercise: Prove the equivalence with the previous def with rank functions! **Hint**: This means that submodularity etc have to be proved, and conversely \mathcal{F} should be defined from r and (i)-(iii) be proved.

Examples

representable

graphic M(G):=

```
S = finite set of vectors over a field (IR or extensions or GF(q)). \mathcal{F} family of linearly independent subsets of S.
```

```
Let G=(V,E) be a graph, and S:=E
\mathcal{F}:= edge-sets of forests

uniform \ \ U_{n,r}
|S|=n, \mathcal{F}:= subsets of S of size at most r
```

Transversal matroids, Gammoids, ...

Operations

Contraction, deletion, dual; Nashwilliams sum:

$$M_1 = (S_1, \mathcal{F}_1), M_2 = (S_2, \mathcal{F}_2)$$
:

 M_1 NW M_2 is defined with { $F_1 \cup F_2$: $F_1 \in \mathcal{F}_1$, $F_2 \in \mathcal{F}_2$ }

partition matroid: NW sum of uniform matroids; often of rank 1

Circuits

Def: \mathcal{C} family of (inclusionwise) minimal sets that are not independent

Proposition: (i)
$$C_1$$
, $C_2 \in \mathcal{C}$, $C_1 \not\subset C_2$
(ii) $C_1 \neq C_2 \in \mathcal{C}$, $x \in C_1 \cap C_2$, $\exists C_3 \in \mathcal{C} : C_3 \subseteq C_1 \cap C_2 \setminus \{x\}$

Proof:
$$r(C_1) + r(C_2) - r(C_1 \cap C_2) = |C_1| - 1 + |C_2| - 1 |C_1 \cap C_2| =$$

= $|C_1 \cup C_2| - 2$

Exercise: Prove the other direction! That is, define the independent sets from circuits and prove their axioms (i)-(iii) from the above axioms (i) – (ii).

So we can now take (i), (ii) as the definition of matroids with their

Bases

Let $\mathcal{M}=(S,\mathcal{F})$ be a matroid. B is a base if $B \in \mathcal{F}$, |B| = r(S).

Set of bases : \mathfrak{B}

Fact: $\forall B_1, B_2 \in \mathcal{B}, \forall x \in B_1 \setminus B_2$ $\exists y \in B_2 \setminus B_1 : (B_1 \setminus x) \cup \{y\} \in \mathcal{B}$ Basis axiom

Proposition: $\mathfrak{G}\neq\emptyset$ is the set of bases of a matr \Leftrightarrow the Fact holds.

Proof: 1.) => The stated property holds. <=:

- 2.) There is unique *possible matroid* with base-set 3.
- 3.) The uniquely defined set system is indeed a matroid

axiom (iii) to $F_1 = B_1 \setminus x$, $F_2 = B_2$

 $\mathcal{F} := \{ \mathsf{F} \subseteq \mathsf{B} : \mathsf{B} \in \mathfrak{B} \}$

use the fact

So we can now take « Fact » as the definition of matroids!

Rank again and Span

Bases, continuation

Fact: $\forall B_1, B_2 \in \mathcal{B}, \forall x \in B_2 \setminus B_1$ $\exists y \in B_1 \setminus B_2 : (B_1 \setminus y) \cup \{x\} \in \mathcal{B}$

Proposition: $\mathfrak{D}\neq\emptyset$ is the set of bases of a matr \Leftrightarrow the Fact holds.

Proof: => : Through the following property from the circuit-axiom:

Proposition: M= (S, \mathcal{F}) matroid, F $\in \mathcal{F}$, e \in S \ F . Then : either F \cup {e} $\in \mathcal{F}$ or F \cup {e} contains a unique circuit of M.

So we can now take « Fact » as the definition!

Corollary: $\{S \setminus B : B \in \mathcal{G}\}$ also satisfies the basis axioms.

Dual Matroid

Def: dual
$$M^{*}=(S,B^{*})$$
 dual de $B^{*}=\{S,B:B\in B^{*}\}$
Fact: $V^{*}(X)=|X|-(V(S)-V(S,X))$

Fact:
$$\checkmark (\times) = (\times) - ((S) - (S) - ($$

Proof:

Def: cocircent, coupe d'un natroide: arc. dudd

Planarity and Duality

circuits of G = circuits of M(G)

cocircuits of G = cocircuits of M(G)=

Inclusionwise min cuts of G*

$$M^*(G) = M(G^*)$$

Equivalently: F is a spanning tree ⇔

E \ F is a spanning tree of the dual graph

Euler's formula: n-1+f-1=m

Greedy alg for max weight indep

Greedy algorithm for a family of sets $\mathcal{H} \subseteq 2^{S}$:

If x_1 , ..., x_i have been chosen, let x_{i+1} be such that $\{x_1$, ..., $x_{i+1}\} \in \mathcal{H}$, $c(x_{i+1})$ max

Theorem If \mathcal{H} is hereditary, then the greedy algorithm finds the optimum for any nonnegative objective function $\Leftrightarrow \mathcal{H}$ is a matroid.

We find:

The opt:

 $\frac{C(x_1)}{C(x_1)} \geq \dots \geq \frac{C(x_n)}{C(x_n)} \geq \dots$

The independence axiom (iii) contradicts the choice of x_i

If you can do it simple, make it complicated!

Thun (Educated):
$$M=(S,T)$$
 white $\{X: X(A) \subseteq V(A)\}$ is $C(X,T)$ with $\{X: X(A) \subseteq V(A)\}$ is $C(X,T)$ with $C(X,T)$

Submodularity => Sets A with positive dual variables form a chain !

$$\dot{w}(F) = (\omega_3 - \omega_2) |F \wedge U_3| + 1$$

$$+ (\omega_2 - \omega_3) |F \wedge U_2| + 1$$

$$+ \omega_n |F \wedge U_n| + 1$$

The inverse of the duality theorem

Matroid Intersection Edmonds (1979)

Let M_1 and M_2 be two matroids, c:

$$(S,r_1)$$
 and (S,r_2)
 (S,\mathcal{F}_1) and (S,\mathcal{F}_2)

maximize
$$\{ c(F) : F \in \mathcal{F}_1 \cap \mathcal{F}_2 \}$$

2 disjoint spanning trees: M_1 and $M_2 = M_1$

Two examples of cases:

2 disjoint spanning trees: M_1 and M_2 := M_1^*

Bipartite matching

Both are partition matroids: sums of uniform matroids on stars

How to conjecture a « good characterization »?

We know: $x \in \text{conv}(\chi_F : F \in \mathcal{F}_i) \Leftrightarrow x(A) \leq r_i(A) \text{ for all } A \subseteq S$

maximize {
$$|F| : F \in \mathcal{F}_1 \cap \mathcal{F}_2$$
 } =? conv $(\chi_F : F \in \mathcal{F}_1 \cap \mathcal{F}_2)$

max {
$$1^T x : x (A) \le r_i(A) (i=1, 2) for all A \subseteq S$$
}

Theorem (Edmonds 1979): $\max_{F \in \mathcal{F}_1 \cap \mathcal{F}_2} |F| = \min_{X \subseteq S} r_1(X) + r_2(S \setminus X)$

Proof:
$$\leq$$

ETATE

 $E = |F| = |F \cap X| + |F \setminus X| \leq$
 $\leq v_1(X) + v_2(S \setminus X)$

Generalization of bipartite matching (of the alternating paths in the « Hungarian method »)

Proof of
$$\geq$$
: that is, there is F and X with $|F| = r_1(X) + r_2(S \setminus X)$.

We prove that the following algorithm terminates with such an F and X.

Algorithme d'intersection

What is the INPUT ? → ORACLE - rank, independence, etc

- **0.)** Let: $F \in \mathcal{F}_1 \cap \mathcal{F}_2$ maximal by inclusion (greedily)
- **1.) Define** arcs from unique cycles:

Algorithmic proof of the matroid intersection theorem

3.) Sources S:= $\{x \in S \setminus F, F \cup \{x\} \in \mathcal{F}_2\}$ **Sinks T:=** $\{x \in S \setminus F, F \cup \{x\} \in \mathcal{F}_1\}$ If S or T is empty?

Find an (S,T)-path.

- a.) If there exists one, let P be one with inclusionwise minimal vertex-set (equivalently, P is chordless).
- **b.)** If there exists none, $T \cap X = \emptyset$, where $X := \{x \in S : x \text{ is reachable from } S\}$

exchange along an improving path

a.) If P= $\{x_1, y_1, x_2, ..., x_k, y_k, x_{k+1}\}$ is a chordless path, then $F \triangle P \in \mathscr{F}_1 \cap \mathscr{F}_2$ Apply the following to $F \cup \{x_1\} \in \mathscr{F}_2$, and $F \cup \{x_{k+1}\} \in \mathscr{F}_1$

Lemma: M = (S, \mathcal{F}) matroid, F $\in \mathcal{F}$, $x_1, ..., x_k \notin F$ If y_i is in the unique cycle of $F_i \cup x_i$, but y_j , j=i+1, ... k is not, then $(F \setminus \{x_1, ..., x_k\}) \cup \{y_1, ..., y_k\} \in \mathcal{F}$

Proof: For k= 1 true, and then use it by induction to $(F \setminus \{x_k\}) \cup \{y_k\}$.

No improving path: show that the solution is optimal

Let $X := \{x \in S : x \text{ is reachable from S} \}$

Lemma : Suppose b.) : $X \cap T = \emptyset$, where

 $X := \{x \in S : x \text{ is reachable from S}\}$

Then
$$|F| = r_1(X) + r_2(S \setminus X)$$

Proof:
$$r_1(X) = |F \cap X|$$
, because $X \subseteq sp_1(F \cap X)$.

$$r_2(S \setminus X) = |F \setminus X|$$
, because $S \setminus X \subseteq sp_2(F \setminus X)$.

