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Matching

matching : a set M c E of vertex-disjoint edges

INPUT : G=(V,E) graph.
TASK : Find a matching of maximum size

Do the red edges form a maximum matching ?
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Augmenting Paths

augmenting path with respect to matching M : path alternating
between M and E \ M with the 2 endpoints uncovered by M.

PRE DR

Proposition (Berge) : G graph, M matchingin G.
M is a maximum matching in G iff there is no augmenting path

.



Matching and vertex cover

matching : M set of vertex-disjoint edges

Max [M|: v

vertex cover : T set of vertices so that G-T has no edges

Min |T| : <t



Minmax for bipartite graphs

Theorem (Kénig) : If G=(V,E) Is bipartite, then v = 1

Proof: < is the proven ‘easy part’; = is to be proved:

If forsome v eV: v(G-v)=v(G)-1, byinduction:
v(G)=v(G-V)+1=1(G-Vv)+1=21(G).

If uv € E then either u or v satisfy this condition !

Exercise 3.1, 3.2
Q.E.D.



LP for bipartite matchings

MATCHING POLYTOPE for G=(V,E) bipartite
X € IRE:
X(©(Vv)<sl,VveV
x=20 )

dual:

VERTEX COVER for G=(V,E) bipartite
X e IRV:
Xit+x21,ViekE
x=0 )

TDI (TU+Cramer, or no odd circuit)




The method of variables
G = (A, B, E) bipartite, |A[=|B|. M= (x;iflj € E, else 0 ), :

Proposition : M is a nonzero polynomial <~ d perfect matching

Proof : All terms of M are different. (There is no cancellation.)

n! Terms, but determinants can be computed in polynomial time :
randomized algorithm: substitute values and then compute !

Questions : If then the det is nonzero can we conclude ?
If it is zero ?
What to do for nonbipartite graphs ?



The method of variables

The probability of error, precisely

Lemma: (Schwartz, Zippel) Let g be a nonzero polynomial of n variables

Xq,.--, X,,, and let it be of degree d ; S < IN is finite, s:=|S|. Moreover, let

Xy,---, X, be random variables taken independently and uniformly from S.
Then Pr (g(Xy,..., X,)=0) £ d/s..

Proof: For n=1 obvious. Le peQ[Xx,,..., X, ;] the coefficient of the
highest exponent to power p of x., and let & be the degree of p.

Pr (q(Xy,..., X,)=0) £ Pr (p(Xy,..., X,)=0) + Pr (q(Xy,..., X,)=0 | p(Xy,..., X,,) #0)

< /s + /s <d/s



The method of variables
The Randomized Algorithm

Oracle Algorithm :
An oracle tells the substitution values of a polynomial in pol(deg) time.
1. Let S={1,...,2n}.
2. Make independent uniform choices in S for each variable.
3. Compute the polynomial (oracle call) for the chosen values.
If #0 : the polynomial is nonzero (3 perfect matching)

If =0 ? We decide: no perfect matching: Pr (error) =

Why not bigger S ? Better to choose |S| = const x deg and repeat !

Proposition : After O( log 1/¢) repetitions Pr (error) < ¢



The complexity class P < RP — NP

.+
L & =
[&eNP &> F R, : 5= 5w
vl R(%y)=0 Vo &

Imagine : x=a graph, y the certificate (eg a substitution with #0 polynomial value )

LCQ/P<> R

cel 1%62 Q(Xr@ ’§>J

The same def as NP but there are many certificates : constant proportion



Tutte-Berge theorem

Theorem : Let G=(V,E) be a graph. Then the minimum, over all
matchings M of the number of uncovered vertices of V =
max { q(X) - [X] : X<V}

Def : g(X) is the n. of comps of G-X having an odd number of vertices

Proof : > easy.

< - We can adapt the proof of Kénig’s theorem:
If v(G—v)=v(G)—1, induction is easy, else apply the exercises.

Hint : In which part of the theorem are
the vertices uncovered by matchings : in
X? Aneven comp of G-X? An odd comp ?

Exercise 3.3
Exercise 3.5



Edmonds’ algorithm

Grow an (inclusionwise max) alternating forest F rooted
in uncovered vertices

If two even vertices are adjacent g
a.) between 2 different components : augment
o e e

b.) in the same component
Generalize Exercise 3.3 to this case. root
Heureka you shrink ! (Edmonds) even odd

In both cases GOTO 1 (possibly using the actual forest).

If there is no edge between the even vertices STOP
X:= odd vertices

Theorem : Xis a Tutte-set and Fis a maximum matching




Summary of algorithms for matchings

Unweighted :

- Algorithms for bipartite graphs: paths in digraphs;

- Method of variables

- Edmonds’algorithm;

- Structural algorithms ( for matchings by Lovasz, T-joins, b-match: S.)

Weighted :
- Primal-Dual framework with max cardinality subroutine
- Ellipsoid method



T-joins

\/\

s-joins, where
Tg:={v: d(v) is odd}

Euler’s theorem : G= (V,E), E : streets
One can go through all the streets F C E(G) isa T-join, if

exactly once < | T = vertices of odd degree of F.
VvV Degreeis even & G is connected

Easy facts about T-joins : G connected, |T| even = 3 T-join ;
min weight « Eulerian replication » = duplication of a minimum T-join.

G=(V,E), w: E > IR, Fis a minimum weight T-join <& (G, w[C]) is
: (—1if eeF
conservative, where w(e).—{ 1if e F S d? 6.5



Polynomial algorithm

Input : G=(V,E), w: E —> IR
Task : minimize the weight of a T-join

Proposition (Edmonds) : If the weights are nonnegative easy reduction
tminimum weight matching of the complete graph on T where the
Weights are the w-shortest paths in G between the vertices of T.



The postman polyhedron

Def : 6(W) Cc E(G) (W c V) isa T-cut, if |WNT]| is odd

Proposition : F T-join, 0(W) T-cut = |Fno(W) |2 1

Theorem Edmonds,Johnson (1973) : Q,(G,T) := conv (T-joins) + IR," =

{xelR,E x(6(W)) =1, (W) is a T-cut, i.e. |WNT] is odd}



Minmax

T(G,T)
v(G,T)

min { |F| : FcE, Fis a T-join }
max{ |£|: € dijoint T-cuts }

Easy : ©(G,T) = v(G,T)

Theorem (Seymour ‘81) If G is bipartite,
©(G,T) = v(G,T)



Proving the T-join polyhedron Thm

Q,(G,T)={xelRF: x(W)=>1, Wisa T-cut
x> 0}
Edmonds-Johnson: % TDI, vertices: T-joins
<

(G, T, c)= v(G,T,2c) /2
N
Seymour: If G is bipartite, T(G,T) = v(G,T)

Metatheorem : Polyhedron the same as weighted minmax theorem



Connection to Shortest Paths

Guan (1962): J T-join w-min iff w[C] conservative

conservative : no negative weight circuit

A(X,Y) : = A, (XY) : = min {w(P) : P path }=
min {w(P) : P {x,y}-join}

Reformulation of Seymour’s theorem (81)
G bipartite, w: E(G) = {-1,1};

Theorem : G conservative < E can be
covered by disjoint cuts C, with |[CNE_| =1



If negative weights are allowed ?

c (F)=Ilc] (F\E)-|c| (FNE)=]|c|(FAE)-c(E)

(So A, (x,y) : = min {w(P) : P path }=
min {w(P) : P {x,y}-join}
Is reducible to min weight perfect matchings.)

This reduction leads to the
T-join polytope



Another application

SCHEDULING IDENTICAL JOBS ON 2 IDENTICAL MACHINES

Input: Partially ordered set of tasks of unit length.
Output: Schedule of min completion time T

Theorem : (Fujii&als) : T=n-v (Gpy)

Solutions for max (weighted) matchings:
with Edmonds’ algorithm (1965)
Grotschel, Lovasz, Schrijver
with Padberg-Rao (1979)
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