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Abstract

We analyse the relations between several graph transformations that were intro-
duced to be used in procedures determining the stability number of a graph. We
show that all these transformations can be decomposed into a sequence of edge
deletions and twin deletions. We also show how some of these transformations are
related to the notion of even pair introduced to color some classes of perfect graphs.
Then, some properties of edge deletion and twin deletion are given and a conjecture
is formulated about the class of graphs for which these transformations can be used
to determine the stability number.
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1 Introduction

A set of pairwise non-adjacent vertices in a graph G is called a stable set. The
maximum size of a stable set in a graph G is called the stability number and
is noted a(G). Given a vertex v of a graph, let N(v) (resp. N(v)) denote
the set of vertices that are adjacent (resp. non-adjacent) to v. The closed
neighborhood Nv] of a vertex v is N(v) U {v}. A clique in a graph is a
complete subgraph. The triangle is the clique of size three. The maximum
size of a clique in a graph G is called the clique number and is noted w(G). The
complement G of a graph G is the graph obtained by removing all the edges
that were in G and adding all the edges that were not in G. Clearly, a(G) =
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w(@) for every graph G. The chromatic number of a graph G is the minimum
number of colors that can be assigned to the vertices of a graph in such a
way that two adjacent vertices receive two distinct colors. This number is
noted x(G). Clearly, w(G) < x(G), for every graph G. The decision problems
associated to determining o, w and x are known to be NP-complete [8].

A chordless path is a set of vertices vy, ..., v, such that for 1 <i < k—1,
vertex v; is adjacent to v;,1 and there is no other edge between these vertices.
Such a path will sometimes be denoted v;-- - --v;. The length of a path is the
number of its edges. A path is odd if it has odd length and even otherwise.
A hole is a chordless cycle with at least five vertices. An antihole is the
complement of a hole. A hole or an antihole is odd if it has an odd number of
vertices and even otherwise.

2 Transformations preserving the stability number

Many graph transformations have been defined in order to determine the size
of a maximum stable set in special classes of graphs.

A vertex v is called simplicial if N(v) is a clique. If v is a simplicial
vertex, then the deletion of N(v) does not change the stability number. This
transformation is called the simplicial reduction.

If @ and b are two adjacent vertices such that N(b) C Nla|, then the
deletion of a does not change the stability number. This transformation is
called the neighborhood reduction. The neighborhood reduction generalizes
the simplicial vertex reduction. If v is a simplicial vertex, then the deletion of
N(v) can be viewed as a sequence of neighborhood reductions for each vertex
a € N(v), as N(v) C Nlal.

A magnet [10] consists of two adjacent vertices a, b such that N(a)\N(b) is
completely linked to N(b)\N(a). If a and b form a magnet, then the deletion of
a and of all the edges between b and N (b)\N(a) does not change the stability
number. This transformation is called the magnet reduction. Clearly, the
magnet reduction generalizes the neighborhood reduction. If a and b are two
adjacent vertices such that N(b) C Na|, then N(b)\N[a] = 0, so N(a)\N(b)
is completely linked to N(b)\N(a). Deleting a corresponds to the magnet
reduction as N(b)\NJa] = 0.

If a, b, c are three vertices such that a-b-c is a chordless path and N(a) C
N(b) U N(c), then the deletion of the edge bc does not change the stability
number. This transformation is called the edge deletion [4].

As remarked in [1], the magnet reduction can be viewed as a sequence of
edge deletions followed by one neighborhood reduction. If a, b are two adjacent
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vertices such that N(a)\N(b) is completely linked to N (b)\N(a), then for each
cin N(b)\Nla], we have that a-b-c is a chordless path and N(a) C N(b)UN(c),

so edge bc can be deleted (edge deletion). When N(b)\Nla] is empty, then
N(b) C Na] and a can be deleted (neighborhood reduction).

Two adjacent vertices a,b are twins if N[a] = NJ[b]. If a,b are twins,
then the deletion of a does not change the stability number. We call this
transformation the twin deletion. Clearly, twin deletion is a special case of
neighborhood reduction, but the neighborhood reduction can be viewed as a
sequence of edge deletions followed by one twin deletion. If a and b are two
adjacent vertices such that N(a) C N[b], then for each ¢ € N(b)\N|a] we have
that a-b-c is a chordless path and N(a) € N(b) U N(c), so edge bc can be
deleted (edge deletion). When N (b)\ N[a] is empty, then N]a] = N[b] and a
can be deleted (twin deletion).

By the previous remarks, the magnet reduction is a sequence of edge dele-
tions followed by one neighborhood reduction, and the neighborhood reduction
is a sequence of edge deletions followed by one twin deletion. So we have the
following:

Proposition 2.1 The magnet reduction is a sequence of edge deletions fol-
lowed by one twin deletion.

3 Transformations preserving the clique number

Some other graph transformations have been defined to determine the chro-
matic number of some subclasses of perfect graphs. The class of perfect
graphs [2] has been defined as the class of graphs G such that for every in-
duced subgraph H of GG, we have y(H) = w(H). The strong perfect graph
theorem [5] asserts that a graph is perfect if and only if it contains no odd
hole and no odd antihole. The class of perfect graphs appears to be a general
class of graphs in which the problem of determining the chromatic number
can be solved in polynomial time [9]. But the problem of finding a purely
combinatorial algorithm for determining y is still open.

If a, b are two non adjacent vertices in a graph G, the contraction of a and b
consists in deleting a and b and adding a new vertex called ab that is adjacent
to every vertex of N(a) U N(b). An even pair [12] is a pair of non adjacent
vertices such that there is no odd chordless path between them. It has been
shown that the even pair contraction preserves the chromatic number and the
clique number in any graph (not necessarily perfect) [7].

A graph is called contractile [3] if it can be reduced to a clique by a sequence
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of even pair contractions. As the even pair contraction preserves y and w, one
can determine the chromatic number and clique number of a contractile graph
as soon as one has a sequence of even pair contractions that transforms the
graph into a clique. A graph is called perfectly contractile [3] if all its induced
subgraphs are contractile.

A prism is a graph that consists of two vertex-disjoint triangles and three
vertex-disjoint paths between them, with no other edge than those in the two
triangles and in the three paths. When odd holes are forbidden the length of
the three paths of a prism must have the same parity. A prism is odd, if the
length of the three paths is odd, and even if the length of the three paths is
even.

The following conjecture tries to characterize the class of perfectly con-
tractile graphs by forbidden induced subgraphs:

Conjecture 3.1 ([13]) A graph is perfectly contractile if and only if it con-
tains no odd hole, no antihole and no odd prism.

A weaker form of this conjecture has been proved:

Theorem 3.2 ([11]) A graph that contains no odd hole, no antihole and no
prism is perfectly contractile.

If two vertices a and b form an even pair in a graph G, then in G, they
are adjacent and N(a)\N(b) is completely linked to N(b)\N(a). In G, the
deletion of a and of all the edges between b and N(b)\N(a) coincide with the
contraction of a,b in G. So we have the following:

Proposition 3.3 An even pair contraction in a graph G is a special case of
a magnet reduction in the complement G.

So, by Proposition 2.1 an even pair contraction is a special case of a se-
quence of edge and twin deletions in the complement. (It should be noted
that even pair contraction preserves the chromatic number whereas the mag-
net reduction and edge-deletion reduction in the complement does not.)

4 Edge and twin deletions

If one can transform a graph into a stable set by applying a sequence of edge

and twin deletions, then one can determine the stability number of the original

graph. It is exactly the number of vertices of the stable set that is obtained.
The following proposition is easy to prove:



B. Lévéque, D. de Werra / Electronic Notes in Discrete Mathematics 35 (2009) 3-8 7

Proposition 4.1 If a graph G can be transformed into a stable set by applying
a sequence of edge and twin deletions, then G' can be transformed into a stable
set by applying first a sequence of edge deletions, then a sequence of twin
deletions.

A graphs can be reduced to a stable set by applying a sequence of twin
deletions if and only if it consists of a set of disjoint cliques. So if one wants to
determine the stability number of a graph by using edge and twin deletions,
one can apply only edge deletion and stop when the graph is a disjoint set
of cliques. Then, the stability number of the original graph is exactly the
number of disjoint cliques when the process stops. A graph is called edge-
deletable if it can be reduced to a set of disjoint cliques by a sequence of edge
deletions. A graph is called perfectly edge-deletable if all its induced subgraphs
are edge-deletable. As a corollary of Theorem 3.2, we can state:

Corollary 4.2 A graph that contains no hole, no odd antihole, and no com-
plement of a prism is perfectly edge-deletable.

Holes and odd antiholes are not edge-deletable but complements of even
prisms and complements of odd prisms different from Cy are edge-deletable.
So we propose the following conjecture:

Conjecture 4.3 A graph is perfectly edge-deletable if and only if it contains
no hole and no odd antihole.

Proving such a conjecture will be a substantial step in the process of finding
a purely combinatorial algorithm for determining the chromatic number of
perfect graphs.

A result of [6] provides the first step of a proof of conjecture 4.3. A chordless
path vq-- - vy is simplicial if it cannot be extended to a chordless path vg-v-
- -Up-Upy1. 1t is easy to see that, given a graph G and an integer k, if every
non empty induced subgraph of G contains a simplicial path on at most k
vertices, then G contains no hole of length > k + 3. The converse is also true:

Theorem 4.4 ([6]) For all positive integers k, a graph contains no hole of
size > k 4+ 3 if and only if all its non empty induced subgraphs contain a
stmplicial path on at most k vertices.

Applied for k = 2, we get the following corollary.

Corollary 4.5 Given a graph with no hole, either it is a set of pairwise dis-
joint cliques or edge deletion can be applied.
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This corollary shows that it is always possible to start the edge deletion
method in a graph with no hole and no odd antihole. But it cannot be
guaranteed that this first step will not create a hole or an odd antihole.
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