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Abstract: A path graph is the intersection graph of subpaths of a tree.
In 1970, Renz asked for a characterization of path graphs by forbidden
induced subgraphs. We answer this question by determining the complete
list of graphs that are not path graphs and are minimal with this property.
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1. INTRODUCTION

All graphs considered here are finite and have no parallel edges and no loop. A hole
is a chordless cycle of length at least four. A graph is chordal (or triangulated) if it
contains no hole as an induced subgraph. Gavril [7] proved that a graph is chordal if
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and only if it is the intersection graph of a family of subtrees of a tree. In this paper,
whenever we talk about the intersection of subgraphs of a graph we mean that the
vertex sets of the subgraphs intersect.

An interval graph is the intersection graph of a family of intervals on the real line;
equivalently, it is the intersection graph of a family of subpaths of a path. An asteroidal
triple in a graph G is a set of three non-adjacent vertices such that for any two of them,
there exists a path between them in G that does not intersect the neighborhood of the
third. Lekkerkerker and Boland [13] proved that a graph is an interval graph if and
only if it is chordal and contains no asteroidal triple. They derived from this result the
list of minimal forbidden subgraphs for interval graphs.

An intermediate class is the class of path graphs. A graph is a path graph if it is the
intersection graph of a family of subpaths of a tree. Clearly, the class of path graphs is
included in the class of chordal graphs and contains the class of interval graphs. Several
characterizations of path graphs have been given [8, 15, 17] but no characterization by
forbidden subgraphs was known, whereas such results exist for intersection graphs of
subpaths of a path (interval graphs [13]), subtrees of a tree (chordal graphs [7]), and
also for directed subpaths of a directed tree (directed path graphs [16]).

In 1970, Renz [17] asked for a complete list of graphs that are chordal, not path
graphs, and are minimal with this property, and he gave two examples of such graphs.
The list of minimal forbidden subgraphs for path graphs was extended in [21], but that
list is incomplete. Here, we answer Renz’s question and obtain a characterization of
path graphs by forbidden induced subgraphs. We will prove that the graphs presented
in Figures 1–5 are all the minimal non-path graphs. In other words:

Theorem 1. A graph is a path graph if and only if it does not contain any members
of the families of F0, . . . ,F16 as an induced subgraph.

We could not find a characterization similar to the one found by Lekkerkerker and
Boland [13] for interval graphs (“an interval graph is a chordal graph with no asteroidal
triple”). We know that in a path graph, the neighborhood of every vertex contains no

FIGURE 1. Forbidden subgraphs with no simplicial vertices.

FIGURE 2. Forbidden subgraphs with a universal vertex.
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FIGURE 3. Forbidden subgraphs with no universal vertex and exactly three simplicial
vertices.

FIGURE 4. Forbidden subgraphs with at least one simplicial vertex that is not co-special
(bold edges form a clique).

FIGURE 5. Forbidden subgraphs with ≥4 simplicial vertices that are all co-special
(bold edges form a clique).

asteroidal triple; but this condition is not sufficient. So we prove directly that a graph
that does not contain any of the excluded subgraphs is a path graph. The initial proof
of the characterization of interval graphs by Lekkerkerker and Boland [13] was fairly
complicated. It was simplified by Halin [12] by using the concept of prime graph
decomposition. Cameron et al. [3] translated Halin’s proof in terms of clique tree. Our
proof is, in its principle, a generalization of the proof presented in [3].

2. SPECIAL SIMPLICIAL VERTICES IN CHORDAL GRAPHS

In a graph G, a clique is a set of pairwise adjacent vertices. Let Q(G) be the set of all
(inclusionwise) maximal cliques of G. When there is no ambiguity we will write Q
instead of Q(G).

Given two vertices u,v in a graph G, a {u,v}-separator is a set S of vertices of G
such that u and v lie in two different components of G\S and S is minimal with this
property. A set is a separator if it is a {u,v}-separator for some u,v in G. Let S(G)
be the set of separators of G. When there is no ambiguity we will write S instead
of S(G).

The neighborhood of a vertex v is the set N(v) of vertices adjacent to v. For a set X
of vertices, let N(X)= (

⋃
v∈X N(v))\X. Let us say that a vertex u is complete to a set X
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of vertices if X⊆N(u). A vertex is simplicial if its neighborhood is a clique. It is easy
to see that a vertex is simplicial if and only if it does not belong to any separator. Given
a simplicial vertex v, let Qv=N(v)∪{v} and Sv=Qv∩N(V \Qv). Since v is simplicial,
Qv is the unique maximal clique containing v. Remark that Sv is not necessarily in
S; for example, in the graph H with vertices a,b,c,d,e and edges ab,bc,cd,de,bd, we
have Sc={b,d} and S(H)={{b},{d}}.

A classical result [1, 11] (see also [9]) states that, in a chordal graph G, every
separator is a clique; moreover, if S is a separator, then there are at least two components
of G\S that contain a vertex that is complete to S, and so S is the intersection of two
maximal cliques.

A clique tree T of a graphG is a treewhose vertices are themembers ofQ and such that,
for each vertex v of G, those members of Q that contain v induce a subtree of T , which
we will denote by Tv. Note that G is the intersection graph of these subtrees. Gavril [7]
proved the classical result that a graph is chordal if and only if it has a clique tree.

Clique trees are very useful when studying chordal graphs or subclasses of chordal
graphs as they give the structure of graphs for which they are a clique tree. We recall
the definitions and properties of clique trees that we need in the article, but the reader
who is not familiar with this notion can refer to classical books of graph theory (like
[9, 14]). Our proofs are done in the clique tree. Occasionally, we will have to refer to
the original graph (for example, to obtain the forbidden subgraphs explicitly) but most
of the time everything can be understood just by studying the clique tree.

In a clique tree T , the label of an edge QQ′ of T is defined as SQQ′ =Q∩Q′. Note that
every edge QQ′ satisfies SQQ′ ∈S; indeed, there exist vertices v∈Q\Q′ and v′ ∈Q′ \Q,
and the set SQQ′ is a {v,v′}-separator. The number of times an element S of S appears
as a label of an edge is equal to c−1, where c is the number of components of G\S
that contains a vertex complete to S [7, 14]. As pointed out above, c is at least two;
moreover, it depends only on S and not on T; so, for a given S∈S, the number c−1
is the same in every clique tree.

Given a set X⊆Q of maximal cliques, let G(X) denote the subgraph of G induced
by all the vertices that appear in members of X. If T is a clique tree of G, then T[X]
denotes the subtree of T of minimum size such that its set of vertices contains X. Note
that if |X|=2, then T[X] is a path.

Given a subtree T ′ of a clique-tree T of G, let Q(T ′) be the set of vertices of T ′ and
S(T ′) be the set of separators of G(Q(T ′)). It is easy to verify the following important
property: T ′ is a clique tree of G(Q(T ′)). Moreover, if T ′ �=T there exists a leaf L of
T not in T ′, and a vertex in L that is not in any vertex of T ′, so G(Q(T ′)) is a strict
induced subgraph of G.

Dirac [6] proved that a chordal graph that is not a clique contains two non-adjacent
simplicial vertices. We need to generalize this theorem to the following. Let us say
that a simplicial vertex v is special if Sv is a member of S and is (inclusionwise)
maximal in S.

Theorem 2. In a chordal graph that is not a clique, there exist two non-adjacent
special simplicial vertices.
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CHARACTERIZING PATH GRAPHS BY FORBIDDEN INDUCED SUBGRAPHS 373

Proof. By the hypothesis G is not a clique, so |Q|≥2 and S �=∅. Let T be a clique
tree of G.

Let us choose, in the set of vertices of T incident to an edge with (inclusionwise)
maximal label, two maximal cliques Q1,Q2 that are at a maximum distance in T . Since
S �=∅ these maximal cliques are distinct.

For i=1,2, let Q′
i be the neighbor of Qi on T[Q1,Q2] (possibly Q′

1=Q′
2 or both

Q′
1=Q2 and Q′

2=Q1). By the choice of Q1,Q2, the label SQiQ′
i
of QiQ′

i is maximal
and no edge of Ti, the subtree of T \Q′

i that contains Qi, has a maximal label. So the
label of each edge of Ti is included in SQiQ′

i
. Let vi∈Qi\Q′

i. As vi is not in SQiQ′
i
, it is

not in any label of Ti and so not in any label of T . Thus, vi is simplicial and Qvi =Qi.
All the labels of the edges incident to Qi are included in SQiQ′

i
, so Svi =SQiQ′

i
and vi is

special. Since Qv1 and Qv2 are distinct cliques, v1 and v2 are not adjacent. �

Algorithms LexBFS [18] and MCS [20] are linear time algorithms that were devel-
oped to find a simplicial elimination ordering in a chordal graph. (A simplicial elim-
ination ordering is an ordering of the vertices v1, . . . , vn such that, for 1<i≤n, vertex
vi is simplicial in the graph induced by vertices v1, . . . , vi−1.) The last vertex found
by these algorithms is simplicial in the whole graph. This vertex is not necessarily
special simplicial. For example, on the graph with vertices a,b,c,d,e, f and edges
ab,bc,cd,eb,ec, fb, fc, every application of LexBFS or MCS will end on one of the
simplicial vertices a,d, which are not special. The proof of Theorem 2 can be turned
into a polynomial time algorithm to find a special simplicial vertex in a chordal
graph. We leave open the problem of finding a special simplicial elimination ordering
in linear time. (A special simplicial elimination ordering is a simplicial elimination
ordering where vertex vi is a special simplicial vertex in the graph induced by vertices
v1, . . . , vi−1.)

3. FORBIDDEN INDUCED SUBGRAPHS

A clique path tree T of G is a clique tree of G such that, for each vertex v of G, the
subtree Tv induced by the cliques that contain v is a path. Note that G is the intersection
graph of these subpaths. Gavril [8] proved that a graph is a path graph if and only if it
has a clique path tree. A graph G is a minimal non-path graph if G is not a path graph
but any induced subgraph of G distinct from G is a path graph. Note that any induced
subgraph of a path graph is also a path graph, so it is enough to require that G\v is a
path graph for every vertex v of G.

Consider graphs F0, . . . ,F16 presented in Figures 1–5. Let us make a few remarks
about them. Each graph in Figure 2 is obtained by adding a universal vertex to some
minimal forbidden subgraph for interval graphs. Clearly, in a path graph the neighbor-
hood of every vertex is an interval graph; so F1, . . . ,F5 are not path graphs. Graphs
F10(n)n≥8 are also forbidden in interval graphs. Graphs F6 and F10(8) are from Renz
[17, Figures 1 and 5]. For i∈{0,1,3,4,5,6,7,9,10,13,15,16}, Panda [16] proved that
Fi is a minimal non-directed path graph, so Fi\x is a directed path graph for every

Journal of Graph Theory DOI 10.1002/jgt



374 JOURNAL OF GRAPH THEORY

vertex x (obviously every directed path graph is a path graph). In general, we have the
following:

Theorem 3. F0, . . . ,F16 are families of minimal non-path graphs.

Proof. Clearly, F0 is a minimal non-path graph. As pointed out above, F1, . . . ,F5

are not path graphs and it is easy to verify that by deleting any vertex of these graphs
one obtains a path graph.

We do not give a detailed proof for each graph, but we show a general statement
that can be used to prove that F6, . . . ,F16 are not path graphs. Let F=Fi for some
i∈{6, . . . ,16}. A maximal clique of F will be called peripheral if it contains only one
separator S and G\S has only two connected components. Such a clique must be a
leaf in any clique tree of F. A maximal clique that is not peripheral will be called
central. In any clique tree of F the central cliques will induce a subtree. It is easy to
see that there is a set K of vertices of F such that every central clique of F contains
K and every peripheral clique intersects K. Therefore, if there is a clique path tree T
of F, then the central cliques must induce a path in T , every peripheral clique must be
adjacent to some extremity of this path, and if two peripheral cliques share a common
vertex of K then they must be adjacent to distinct extremities. Another simple remark
is that if a vertex of F is in exactly two maximal cliques, then these two cliques must
be adjacent in any clique tree of G.

Let P1, . . . ,Pk and C1, . . . ,C� be, respectively, the peripheral and the central cliques
of F. The following conditions for a path tree of F are easy to check using our previous
remarks:

• When F=F6 or F7, then k=�=3 and Pi must be adjacent to Ci.
• When F=F8,F9,F10,F11,F12,F13, or F16, then k is odd, for each i∈{1, . . . , k−1},

Pi and Pi+1 must be adjacent to distinct extremities of the path induced by the
central cliques, and this holds also for P1 and Pk.

• When F=F14 or F15, then k is even, for each i∈{1, . . . , k−1}, Pi and Pi+1 must
be adjacent to distinct extremities of the path induced by the central cliques, and
P1 and Pk must be adjacent to the same extremity.

In each of these cases, it is easy to see that no clique tree can satisfy all the conditions.
Furthermore, it is not difficult to check that when we delete any vertex of F then

one of the above constraints is removed and this is sufficient to make it possible to
construct a clique path tree. �

4. CO-SPECIAL SIMPLICIAL VERTICES

Let us say that a simplicial vertex v is co-special if Sv is a separator such that G\Sv has
exactly two components. Lekkerkerker and Boland [13] call this type of vertex strongly
simplicial. Note that in that case Sv is a minimal element of S and it appears exactly
once as a label of any path tree of G. (The fact that Sv is a minimal element of S for
some simplicial vertex v does not imply that v is co-special; for example, consider the
graph with vertices a,b,c,d and edges ab,ac,ad; in fact it has no co-special vertex.)
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Also note that, in contrast with Theorem 2, a chordal graph does not necessarily have
a simplicial vertex v where Sv is a minimal element of S; for example, consider the
graph with seven vertices a,b,c,d,e, f,g and edges bc,cd,ef, fg, ab,ac,ad,ae,af,ag.

Lemma 1. Let G be a minimal non-path graph. Then either G is one of F11, . . . ,F15

or every simplicial vertex of G is co-special.

Proof. Suppose on the contrary that G is a minimal non-path graph, different from
F11, . . . ,F15, and there is a simplicial vertex q of G that is not co-special. All simplicial
vertices of F0, . . . ,F10,F16 are co-special, so G is not any of these graphs; moreover,
it does not contain any of them strictly (for otherwise G would not be minimal).
Therefore, G contains none of F0, . . . ,F16.

The graph G is not a clique as it is not a path graph. Let us denote by Q the unique
maximal clique that contains q. Consider graph G(Q\Q), which is equal to G\(Q\Sq).
Since Q\Sq �=∅, and by the minimality of G, it follows that G(Q\Q) admits a clique
path tree T0. Let Q′ be a vertex of T0 such that Sq⊆Q′. If Q′ =Sq, then by replacing
Q′ by Q in T0 we obtain a clique path tree of G, a contradiction. So Q′ �=Sq. Let
q′ ∈Q′ \Sq, then Sq=Q∩Q′ is a {q,q′}-separator. Let T ′

0 be obtained from T0 by adding
vertex Q and edge QQ′. Remark that T ′

0 is a clique tree of G but not a clique path tree
since G is not a path graph.

Let T ′ be the maximal subtree of T ′
0 that contains Q and Q′ and such that the edge

QQ′ is the only edge whose label is included in Sq. So T ′ is a clique tree of G(Q(T ′)).
Since q is not co-special, there is an edge of T0 whose label is included in Sq, and so T ′
is a strict subgraph of T ′

0. So G(Q(T ′)) is a strict subgraph of G and by the minimality
of G it is a path graph. Let T be a clique path tree of this graph. From now on, our
goal will be to show that either G contains one of the forbidden subgraphs or T can
be extended into a clique path tree of G.

We claim that Q is a leaf of T . If not, then there are at least two labels of T that
are included in Sq, which contradicts the definition of T ′ (the number of times a label
appears in a clique tree is constant).

Let T1, . . . ,T� be the subtrees of T ′
0\T ′ (�≥1). For 1≤ i≤�, let QiQ′

i be the edge
between Ti and T ′ with Qi∈Ti and Q′

i∈T ′. Note that Q1, . . . ,Q� are pairwise disjoint
(but Q′,Q′

1, . . . ,Q
′
� are not necessarily pairwise disjoint). Let Si=Qi∩Q′

i and vi∈Qi\Q′
i.

Let H be the intersection graph of S1, . . . ,S�, that is, H has vertex-set VH={S1, . . . ,S�}
and edge-set EH={SiSj|Si∩Sj �=∅}.
Claim 1. H contains no odd cycle.

Proof. Suppose on the contrary, without loss of generality, that S1−·· ·−Sp−S1
is an odd cycle in H, with length p=2r+1 (r≥1). Let Ij=Sj∩Sj+1 (j=1, . . . ,p) with
Sp+1=S1. Suppose that for some j �=k we have Ij∩Ik �=∅; then there is a common
vertex in the cliques Qj,Qj+1,Qk,Qk+1, and the number of different cliques among
these is at least three, which contradicts the fact that T0 is a clique path tree as
these three cliques do not lie on a common path of T0. Therefore, we have Ij∩Ik=∅
whenever j �=k. For 1≤ j≤p, let sj∈ Ij. By the preceding remark, the sj’s are pairwise
distinct. By the definition of T ′, we have Sj⊆Sq for each 1≤ j≤p, so the sj’s are all
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in Q and Q′. Let us consider the subgraph induced by q,q′, v1, . . . , vp, s1, . . . , sp. Both
q and q′ are adjacent to all of the clique formed by the sj’s. Each vertex vj is adjacent
to sj−1 and sj (with s0=sp) and not to any other si or to q. Vertex q′ has no neighbor
among the vj’s, for otherwise q′ is in some Sj and then also in Sq⊆Q, a contradiction to
its definition. Now {q,q′, v1, . . . , vp, s1, . . . , sp} induces F11(4r+4)r≥1, a contradiction.
Thus the claim holds. �

By the preceding claim, H is a bipartite graph.
For 1≤ i≤�, let Ri={S∈S(T ′)|Si∩S �=∅ and Si\S �=∅}. Let X={Si|Ri �=∅}. We

remark that SQ /∈Ri.

Claim 2. There is no odd path between two vertices of X in H.

Proof. Suppose on the contrary, without loss of generality, that S1−·· ·−Sp is an
odd path in H between two vertices S1,Sp of X (with p=2k, k≥1), and assume that
p is minimum with this property. By the minimality, all interior vertices Sj (1<j<p)
are not in X. For 1≤ j<p, let sj be a vertex in Sj∩Sj+1. As in the preceding claim,
the sj’s are pairwise distinct and lie in Q and Q′. Let P be the path T ′[Q′

1,Q
′
2]. We

note that when p>2, then S2 is not in X, so Q′
3=Q′

1, for otherwise Ts2
0 would not be

a path; then S3 is not in X, so Q′
4=Q′

2, and so on. Thus, the two extremities of P are
Q′
1=Q′

3=·· ·=Q′
p−1 and Q′

2=Q′
4=·· ·=Q′

p. Since S1 and Sp are in X, the sets R1,Rp

are non-empty.
Let L1 be the closest vertex to Q′

1 in P such that there exists an edge incident to
L1 with label in R1, and let L1K1 be such an edge and R1 be its label (such an edge
exists because R1 �=∅). Similarly, let Lp be the closest vertex to Q′

p in P such that there
exists an edge incident to Lp with label in Rp, and let LpKp be such an edge and Rp

be its label. So S1⊆L1, S1�K1 and Sp⊆Lp, Sp�Kp. Each of K1,Kp may be in P or
not. Since T ′ \Q is a clique path tree, Q′ lies between Q′

1 and L1 and between Lp and
Q′
p along P. So Q′

1,Lp,Q
′,L1,Q′

p lie in this order on P, and S1 is included in all labels
between Q′

1 and L1 in P, and Sp is included in all labels between Q′
p and Lp in P.

Let v0∈K1\L1 and vp+1∈Kp\Lp. Since T ′
0 is a clique tree, v0 and vp+1 are distinct

from v1, . . . , vp and not adjacent to q.
Let s0∈S1∩R1 and sp∈Sp∩Rp. Then v0 and s0 are adjacent, and vp+1 and sp are

adjacent. Since T0 is a clique path tree, if K1 or Kp is not in P, then s0 and sp are
different from each other, from s1, . . . , sp−1 and from v0, . . . , vp+1. Furthermore, if K1

is not in P, then v0 is not adjacent to any of s1, . . . , sp; and if Kp is not in P, then vp+1

is not adjacent to any of s0, . . . , sp−1.
Let s′0∈S1\R1 and s′p∈Sp\Rp. Then v0 and s′0 are not adjacent, and vp+1 and s′p

are not adjacent. Since T0 is a clique path tree, if K1 or Kp is in P, then s′0 and s′p are
different from each other, from s1, . . . , sp−1 and from v0, . . . , vp+1. Furthermore, if K1 is
in P, then v0 is adjacent to s′p and to s1, . . . , sp; and if Kp is in P, then vp+1 is adjacent
to s′0 and to s0, . . . , sp−1.

Note that {q,s′0, s0, s1, s2, . . . , sp, s′p} induces a clique in G. Moreover, v1 is adjacent
to s′0, vp is adjacent to s′p, for i=1, . . . ,p, vi is adjacent to si−1 and si, and there is no
other edge between v1, . . . , vp and that clique.
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Suppose that K1=Kp. Then L1=Lp=Q′ and K1 is not in P. By the definition of
T ′, there exists y∈R1\Sq. Vertex y is distinct from all si’s as it is not in Sq, and it is
adjacent to all of v0, s0, . . . , sp and to none of q,v1, . . . , vp. Then {q,y,v0, . . . , vp, s0, . . . , sp}
induces F12(4k+4)k≥1, a contradiction. So K1 �=Kp, and v0 and vp+1 are distinct non-
adjacent vertices. We can choose vertices x1, . . . , xr (r≥1) not in Sq and on the labels of
T ′[K1,Kp] such that v0−x1−·· ·−xr−vp+1 is a chordless path in G. Vertices x1, . . . , xr
are distinct from and adjacent to s′0, s

′
p, s0, . . . , sp, and they are distinct from and not

adjacent to any of q,v1, . . . , vp.
Suppose that L1=Q′

p and Lp=Q′
1. Then K1 and Kp are not in P. If r=1, then

{q,v0, . . . , vp+1, s0, . . . , sp,x1} induces F14(4k+5)k≥1. If r=2, then {q,v0, . . . , vp+1,
s0, . . . , sp,x1, x2} induces F15(4k+6)k≥1. If r≥3, then {q,v0, vp+1, s0, sp,x1, . . . , xr}
induces F10(r+5)r≥3, a contradiction.

Suppose now that L1 �=Q′
p and Lp=Q′

1. Then Kp is not in P and we may assume
that K1 is in P. If r=1, then {q,v0, . . . , vp+1, s′0, s1 . . . , sp,x1} induces F13(4k+5)k≥1. If
r≥2, then {q,v0, vp+1, x1, . . . , xr, s′0, sp} induces F5(r+5)r≥2, a contradiction.

Suppose finally that L1 �=Q′
p and Lp �=Q′

1. Then we may assume that K1 and
Kp are in P. If r=1, then {q,v0, vp+1, s′0, s1, s

′
p,x1} induces F2. If r=2, then

{q,v0, vp+1, s′0, s1, s
′
p,x1, x2} induces F3. If r≥3, then {q,v0, vp+1, x1, . . . , xr, s′0, s

′
p}

induces F10(r+5)r≥3, a contradiction. Thus the claim holds. �

By the preceding two claims,H is a bipartite graph, so its vertex-set can be partitioned
into two stable sets AH,BH, and we may assume that X⊆AH. Now all the subtrees Ti
can be linked to T to get a clique path tree of G as follows. For each Si∈AH, we add
an edge QQi between T and Ti. This creates a clique path tree on the corresponding
subset of cliques because AH is a stable set of H and Q is a leaf of T . For each Si∈BH,
let Q′′

i ∈Q(T) be such that Q′′
i ∩Si �=∅ and the length of T[Q,Q′′

i ] is maximal. Since
Si∈BH, we have Ri=∅, so Si⊆Q′′

i and we can add an edge Q′′
i Qi between T and

Ti. This creates a clique path tree of G because BH is a stable set of H and by the
definition of Q′′

i , a contradiction. �

5. CHARACTERIZATION OF PATH GRAPHS

In this section we prove the main theorem, that is, path graphs are exactly the graphs
that do not contain any of F0, . . . ,F16.

Lemma 2. In a graph that does not contain any member of the families of
F0, . . . ,F5,F10, the neighborhood of every vertex does not contain an asteroidal triple.

Proof. Suppose that in a graph G the neighborhood of some vertex v contains an
asteroidal triple. Then, by [13], the neighborhood contains a minimal forbidden induced
subgraph H for interval graphs. Then H and v induce one of F0, . . . ,F5,F10 in G. �

Given three non-adjacent vertices a,b,c, we say that a is in the middle of b,c if
every path between b and c contains a vertex from N(a). If a,b,c is not an asteroidal
triple, then at least one of them is in the middle of the others.
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Lemma 3. In a chordal graph G with clique tree T, a vertex a is in the middle of two
vertices b,c if and only if for all maximal cliques Qb and Qc with b∈Qb and c∈Qc,
there is an edge of the path T[Qb,Qc] such that a is complete to its label.

Proof. Suppose that a is in the middle of b,c. Let Qb and Qc be maximal cliques
with b∈Qb and c∈Qc, and suppose there is no edge of T[Qb,Qc] such that a is complete
to its label. For each edge on T[Qb,Qc], one can select a vertex that is not adjacent to
a. Then the set of selected vertices forms a path from b to c that uses no vertex from
N(a), a contradiction.

Suppose now that for all maximal cliques Qb and Qc with b∈Qb and c∈Qc, there
is an edge of the path T[Qb,Qc] such that a is complete to its label. Suppose that
there exists a path x0−·· ·−xr, with b=x0 and c=xr and none of the xi’s is in N(a).
We may assume that this path is chordless. For 1≤ i≤r, let Qi be a maximal clique
containing xi−1, xi. Then Q1, . . . ,Qr appear in this order along a subpath of T . On each
T[Qi,Qi+1] (1≤i≤r−1), vertex a is not adjacent to xi, so a is not complete to any label
of T[Q1, . . . ,Qr], but Q1 contains b and Qr contains c, a contradiction. �

Now we are ready to prove the main theorem. Part of the proof was done in the
previous section. Lemma 1 deals with the case where there exists a simplicial vertex
that is in the middle of two other vertices; now we have to look at the case where all
simplicial vertices are not in the middle of any pair of vertices.

Proof of Theorem 1. By Theorem 3, a path graph does not contain any of
F0, . . . ,F16. Suppose now that there exists a graph G that does not contain any of
F0, . . . ,F16 and is a minimal non-path graph. Since G contains no F0, it is chordal. By
Theorem 2, there is a special simplicial vertex q of G. By Lemma 1, q is co-special.
Let us denote by Q the unique maximal clique containing q. It will be convenient to
denote by SQ the separator Sq.

The graph G is not a clique as it is not a path graph. Consider graph G(Q\Q), which
is equal to G\(Q\Sq). Since Q\Sq �=∅, and by the minimality of G, it follows that
G(Q\Q) admits a clique path tree T0. Let Q′ be a vertex of T0 such that Sq⊂Q′ (by
the fact that SQ is a separator Q′ does exist). Let T ′

0 be obtained from T0 by adding
vertex Q and edge QQ′. Remark that T ′

0 is a clique tree of G but not a clique path tree
since G is not a path graph.

Claim 1. For all non-adjacent vertices u,w /∈Q, there exists a path between u and w
that avoids the neighborhood of q.

Proof. Suppose the contrary. Let U,W∈Q be such that u∈U and w∈W. We have
U �=W since u,w are not adjacent. By Lemma 3, there is an edge of T0[U,W] whose
label is included in SQ, contradicting that q is co-special. Thus the claim holds. �

For each clique L∈Q\{Q,Q′} we will use the following notation. Let L′ be the
neighbor of L along T0[L,Q′] and SL be the label L∩L′ of the edge LL′. Let TL be the
largest subtree of T ′

0 that contains Q′ and in which no label is included in SL. Let S′
L

be the label of the edge of T0[L,Q′] that has exactly one extremity in TL.

Journal of Graph Theory DOI 10.1002/jgt



CHARACTERIZING PATH GRAPHS BY FORBIDDEN INDUCED SUBGRAPHS 379

Since q is special and co-special we have SQ�SL, so TL contains Q. Note that S′
L⊆SL

by the definition of TL.
Let L be the set of cliques L of Q\{Q,Q′} such that LL′ is the only edge incident

to L whose label contains S′
L. In particular, for a vertex x∈Q′, any leaf of Tx

0 which is
not equal to Q′ is in L. Recall that Tx

0 is a path because T0 is a clique path tree. Let A
be the set of vertices a of Q such that Q′ is a vertex of Ta

0 that is not a leaf. Then A is
not empty, for otherwise T ′

0 would be a clique path tree of G.

Claim 2. For each clique L∈L we have L′ ∈TL.

Proof. Suppose on the contrary that L′ /∈TL. Let L be the clique in T0[L,Q′] such
that L /∈TL and L

′ ∈TL. Then L �=L and the edge LL
′
has label S′

L (possibly L=L′).
When we remove the edges LL′ and LL

′
from T ′

0, there remain three subtrees T1,T2,T3,
where T1 is the subtree that contains L, T2 is the subtree that contains L′ and L, and
T3 is the subtree that contains L

′
,Q′,Q. Let T4 be the tree formed by T1 and T3 plus

the edge LL
′
. Then, since S′

L⊆SL, T4 is a clique tree of G(Q(T4)). Let x be any vertex
in L′ \L. Vertex x does not belong to any vertex of T1 as it is not in L. Since S′

L⊆L,
vertex x does not belong to any vertex of T3. So G(Q(T4)) is a strict subgraph of G
and there exists a clique path tree T5 of G(Q(T4)). Label S′

L is on the edge LL
′
of T4,

so it is also a label of T5. Consequently, there is an edge LL′′ of T5 with a label R
such that S′

L⊆R⊆L. (Possibly L′′ =L
′
). Suppose that R �=S′

L. Then there is an edge of
T1 or T3 with label R. But no label of T1 can be R by the definition of L; and all the
labels of T3 that are included in L are also included in S′

L, so no label of T3 can be R, a
contradiction. So R=S′

L. Now if we remove the edge LL′′ from T5 and replace it by the
subtree T2 and edges LL′ and LL′′, we obtain a clique path tree of G, a contradiction.
Thus the claim holds. �

By the preceding claim, every L∈L satisfies S′
L=SL.

Let L∗ be the set of all L∈L such that TL is a strict subtree of T ′
0\L.

Claim 3. For any a∈A, at least one leaf of Ta
0 is in L∗.

Proof. Let L1,L2 be the leaves of Ta
0 ; as already noted, both are in L. For i=1,2,

let �i∈Li\SLi . The three vertices q,�1,�2 are adjacent to a, so they do not form an
asteroidal triple by Lemma 2, and so one of them is in the middle of the other two.
Vertex q cannot be in the middle of �1,�2 by Claim 1. So we may assume up to
symmetry that �1 is in the middle of q,�2. So, by Lemma 3, there is an edge of T ′

0[Q,L2]
with a label included in SL1 . So TL1 is a strict subtree of T ′

0\L1 and L1∈L∗. Thus the
claim holds. �

The preceding claim implies that L∗ is not empty. We choose L∈L∗ such that the
subtree TL is maximal. Let SQ′ be the label of the edge of T0[L,Q′] incident to Q′.
Vertex q is special and co-special, so there exists sQ in SQ\SQ′ , and we have sQ /∈SL.
Therefore, no clique of Q\Q(TL) contains sQ. We add the edge LL′ to TL to obtain a
clique tree T ′

L of G(Q(TL)∪{L}). Since L∈L∗, we have T ′
L �=T ′

0, and by the minimality
of G, there exists a clique path tree T of G(Q(T ′

L)). Note that L is a leaf of T , for
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otherwise there are at least two labels of T that are included in SL, which contradicts
the definition of TL. From now on, our goal will be to show that either G contains one
of the forbidden subgraphs, or T can be extended into a clique path tree of G.

Claim 4. Let a∈A be such that both leaves of Ta
0 are not in TL. Let La be a leaf of

Ta
0 that belongs to L∗. Then L′

a is in TL, and every edge KK′ of T0 with K /∈TL and
K′ ∈TL satisfies SK ⊆SLa .

Proof. By Claim 3, La exists. Since the labels of the edges of TL are not included
in SL, they are also not included in SLa . So TL is a subtree of TLa . By the maximality
of TL, we have TL=TLa . By Claim 2, L′

a is in TL. By the definition of TLa , every edge
KK′ of T0 with K /∈TL and K′∈TL satisfies SK⊆SLa . Thus the claim holds. �

Claim 5. There exist U,W∈Q\Q(T ′
L) such that UL is an edge of T0, SU \Q′ �=∅,

U∩W �=∅, W ′ ∈Q(TL) and W∩Q �=∅.
Proof. We define sets U ,V as follows:

U = {U∈Q\Q(T ′
L) |UL is an edge of T0}

V = {V∈Q\Q(T ′
L) |V ′ ∈Q(TL)}.

We observe that the members of V are pairwise disjoint. For if there is a vertex v in
V1∩V2 for some V1,V2∈V , then v is on three labels (namely SV1 ,SV2 , and SL) of T0
that do not lie on a common path, contradicting that T0 is a clique path tree.

We define sets Up (p≥1) and Vp (p≥0) as follows:

V0 = {W∈V |W∩Q �=∅}
Up = {U∈U \(U1∪·· ·∪Up−1) |∃ V∈Vp−1 such that U∩V �=∅} (p≥1)

Vp = {V∈V \(V0∪·· ·∪Vp−1)|∃ U∈Up such that V∩U �=∅} (p≥1).

Consider the smallest k≥1 such that there exists U∈Uk with SU \Q′ �=∅. If no such
U exists, then let k=∞. Claim 5 to be proved states that k=1, so let us suppose on
the contrary that k≥2. For all 1≤p≤k−1 and all U∈Up, we have SU ⊆Q′; for each
such U we denote by U′′ the vertex of Q(T) such that U′′ ∩SU �=∅ and the length of
T[L,U′′] is maximum. Remark that SU is included in U′′ if and only if all vertices of
T that intersect SU contain SU . Let us prove that:

SU ⊆U′′ for every U∈Up, 1≤p≤k−1. (1)

Suppose that there existsUp∈Up, 1≤p≤k−1, such that SUp�U′′
p , and let p be minimum

with this property. Let V0, . . . ,Vp−1,U1, . . . ,Up be such that Vi∈Vi, Ui∈Ui, Vi−1∩Ui �=
∅, and Ui∩Vi �=∅. We claim that V ′

0=V ′
1=·· ·=V ′

p−1. For otherwise there exists i∈
{1, . . . ,p−1} such that V ′

i−1 �=V ′
i . Then V ′

i contains elements of SUi but not all, and so
SUi�U′′

i , which contradicts the minimality of p. Pick ui∈Ui\SUi and vi∈Vi\SVi . Let
x1, . . . , xr be such that x1∈V0∩U1, x2∈U1∩V1, . . . , xr∈Vp−1∩Up with r=2p−1.
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By the definition of the Vi’s, none of x2, . . . , xr is in Q. Let x0∈V0∩Q (maybe
x0=x1). So x0∈SV0 ⊆SL⊂L. None of U2, . . . ,Up can contain x0 by the definition of
U1. Note that xr is in Up and V ′

p−1=V ′
0; on the other hand we have SUp�U′′

p . So there

exists a clique Z of TL such that Z′ ∈Tx0
0 , SUp ⊆Z′, SUp ∩Z �=∅ and SUp \Z �=∅. Vertex

Q′ is on T0[L,Z′] as SUp ⊆Q′. Let z∈Z\Z′. We can find vertices y1, . . . , yt on the labels
of T ′

0[Z,Q] such that none of them is in SL and z−y1−·· ·−yt−q is a chordless path
in G. Let �∈L\SL. By Claim 1, there exists a path P between z and � whose vertices
are not neighbors of q.

If Z∈Tx0
0 , then let b∈SUp \Z. As q is special and co-special, we have SQ�SZ , so

let c∈SQ\SZ . Then z,�,q form an asteroidal triple (because of the three paths P,
z−y1−·· ·−yt−q, and �−b−c−q), and they lie in the neighborhood of x0, a contra-
diction to Lemma 2. So Z /∈Tx0

0 . Let xr+1∈Z∩Up. If xr+1∈Q, then z,�,q form an
asteroidal triple (because of paths P, z−y1−·· ·−yt−q, and �−x0−q), and they lie in
the neighborhood of xr+1, a contradiction again. So xr+1 /∈Q. The SUi’s are all included
in Q′ and so in SL too. They are pairwise disjoint, for otherwise T0 is not a clique path
tree. Vertex � is not in any of the SUi’s, and � is adjacent to all of x0, . . . , xr+1 and to
none of u1, . . . ,up,v0, . . . , vp−1, y1, . . . , yt, z,q.

Suppose that V0∩U1∩Q �=∅. Then we may assume that x0=x1, so x0 is in A and
the two leaves of Tx0

0 are not in TL. By Claims 3 and 4, there exists a leaf Lx0 of Tx0
0

that belongs to L∗ and L′
x0 is in TL, so Lx0 =V0. But xr+1 is in Z∩Up, so it is not in

SV0 ; thus SL�SV0 , which contradicts the end of Claim 4. Therefore V0∩U1∩Q=∅, so
x0 �=x1, x0 /∈U1, x1 /∈Q. Now, if t=1, then {u1, . . . ,up,v0, . . . , vp−1, x0, . . . , xr+1, y1,q, z,�}
induces F14(4p+5)p≥1. If t=2, then {u1, . . . ,up,v0, . . . , vp−1, x0, . . . , xr+1, y1, y2,q, z,�}
induces F15(4p+6)p≥1. If t≥3, then {�, x0, xr+1, z, y1, . . . , yt,q} induces F10(s+5)t≥3, a
contradiction. Therefore (1) holds.

Suppose that k is finite. Let V0, . . . ,Vk−1,U1, . . . ,Uk be such that Vi∈Vi, Ui∈Ui,
Vi−1∩Ui �=∅, andUi∩Vi �=∅. Let ui∈Ui\SUi and vi∈Vi\SVi . Pick vertices x1∈V0∩U1,
x2∈U1∩V1, . . . , xr∈Vk−1∩Uk with r=2k−1. By the definition of the Vi’s, none of
x2, . . . , xr is inQ. Let x0∈V0∩Q. Suppose that V0∩U1∩Q �=∅. Then we can assume that
x0=x1, so x0 is in A and the two leaves of Tx0

0 are not in TL. By Claims 3 and 4, a leaf Lx0
of Tx0

0 is in L∗ and L′
x0 is in TL, so Lx0 =V0. But x2 is in SV1 and not in SV0 , so SV1�SV0 ,

which contradicts the end of Claim 4. Therefore V0∩U1∩Q=∅, and x0 �=x1, x0 /∈U1,
x1 /∈Q. Let sUk ∈SUk \Q′. Vertex sUk is not adjacent to any of q,sQ,v0, . . . , vk−1 because
sUk /∈Q′, and by the minimality of k, vertex sUk is not adjacent to u1, . . . ,uk−1. Then
{u1, . . . ,uk,v0, . . . , vk−1, x0, . . . , xr, sUk , sQ,q} induces F16(4k+3)k≥2, a contradiction.

Now k is infinite. Then the members of
⋃

p≥1Up are included in Q′ and pairwise
disjoint, for otherwise T0 is not a clique path tree. For each member M of U∪V , let
T ′
0(M) be the component of T ′

0\T ′
L that containsM. Starting from the clique path tree T

and the trees T ′
0(M) (M∈U∪V), we build a new tree as follows. For each V∈⋃

p≥0Vp,
we add the edge VL between T ′

0(V) and T . For each U∈⋃
p≥1Up, we add the edge

UU′′ between T ′
0(U) and T . For each U∈U \(⋃p≥1Up), we add the edge UL between

T ′
0(U) and T . For each V∈V \(⋃p≥0Vp), we define V ′′ ∈Q(T) such that V ′′ ∩SV �=∅

and the length of T[L,V ′′] is maximum. By the definition of V0, we have SV ∩Q=∅,
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so V ′′ �=Q, so V ′′ is a vertex of TL on T0[L,V] and it contains SV as SV ⊆SL. Then
we can add the edge VV ′′ between T ′

0(V) and T . Thus we obtain a clique path tree of
G, a contradiction. So k=1, and there exist U∈U1 and W∈V0 such that SU \Q′ �=∅,
U∩W �=∅, and W∩Q �=∅. Thus the claim holds. �

LetU,W be as in the preceding claim. Let sU ∈SU \Q′. Vertex sU is not adjacent to sQ.
Let u∈U\SU and w∈W \SW . We have W ′ ∈Q(TL), so SW ⊆SL. Moreover W∩Q �=∅,
so W∩Q′ ∩L �=∅, so Q′ is on T0[W,L] as T0 is a clique path tree.

Claim 6. SW =SL.

Proof. Assume on the contrary that SW �=SL. Then SW is a proper subset of SL.
Suppose that there exists a∈U∩W∩Q �=∅. Then a is in A and the two leaves of Ta

0 are
not in TL. By Claims 3 and 4, a leaf La of Ta

0 is in L∗ and L′
a is in TL, so La=W. But

SL�SW , so Claim 4 is contradicted. Therefore U∩W∩Q=∅. By the definition of U and
W, there exists b∈W∩Q and c∈U∩W. So b /∈U, c /∈Q, b �=c. Since sU is in SU \Q′, we
have SU�SW . The labels of the edges of TL are not included in SL, so they are also not
in SW . Thus, we can choose vertices x1, . . . , xr on the labels of T ′

0[U,Q] such that none
of the xi’s is in SW , x1∈U, xr∈Q, and u−x1−·· ·−xr−q is a path from u to q that avoids
N(w). Suppose r=1. Then x1 is different from sU and sQ, and {w,b,c,u, sU,x1, sQ,q}
induces F8. Suppose r=2. If x1 is adjacent to sQ, then {w,b,c,u, sU,x1, sQ,q} induces
F9, and if x1 is not adjacent to sQ, then {w,b,c,u,x1, x2, sQ,q} induces F9. Finally,
suppose r≥3. Then {w,b,c,u,x1, . . . , xr,q} induces F10(r+5)r≥3. In all cases we obtain
a contradiction. Thus the claim holds. �

Claim 7. W∈L∗.

Proof. In the connected component of T ′
0\W ′ that contains W, let X∈Q be such

that SW ⊆X and the length of T ′
0[X,W] is maximum (possibly X=W). Then SW ⊆SX

and XX′ is the only edge of T ′
0 incident to X that contains SW , so X∈L. Since SW ⊆SX

we have that W /∈TX . Then, by Claim 2 we have X=W and by Claim 6 we have
TW =TL; so W∈L∗. Thus the claim holds. �

By Claim 7, we have W∈L∗. By Claim 6, we have TW =TL, so TW is also maximal
and what we have proved for L can be done for W. Thus, by Claim 5, there exists
X /∈TW such that XW is an edge of T0 with SX \Q′ �=∅ and X∩SW �=∅. Let x∈X\W
and sX ∈SX \Q′. Vertex sX is not in SW , for otherwise, it would also be in SL and in
Q′. Vertex sU is not in SL, for otherwise, it would also be in SW and in Q′. Vertex sQ
is not in SW (=SL). So sQ,sX, sU are pairwise non-adjacent.

Suppose that there exists a vertex a∈U∩X∩Q �=∅. So a∈A, but none of the two
leaves of Ta

0 can satisfy Claim 4, a contradiction. Therefore U∩X∩Q=∅.
Suppose that U∩X �=∅, and let a∈U∩X. So a is not in Q. Let b∈SW ∩Q (=SL∩Q).

So b is not in U∩X. If b /∈X∪U, then {q,u,x, sQ,sU,sX,a,b} induces F6, a contradiction.
So b is in one of U,X, say b∈X\U (if b is in U\X the argument is similar). Since W is
in L, there is a vertex c∈SW \SX . Vertex c is adjacent to a,b, sU,sQ and not to x. Then
{x,a,b,u, sU,c, sQ,q} induces F8, F9, or F10(8), a contradiction. Therefore U∩X=∅.
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Let a∈U∩W, so a /∈X. Suppose a /∈Q. If there exists b∈X∩Q, then b is also in
L and {q,u,x, sQ,sU,sX,a,b} induces F6, a contradiction. So X∩Q=∅. Let c∈W∩Q.
Then c∈L and c /∈X. Let d∈X∩SW ; so d∈L, d /∈Q, d /∈U. If c is adjacent to u, then
{q,u,x, sQ,sU,sX,c,d} induces F6, else {q,u,x, sQ,sU,sX,a,c,d} induces F7, a contradic-
tion. So a∈Q. Let e∈X∩SW ; so e∈L. If e /∈Q, then {q,u,x, sQ,sU,sX,a,e} induces F6,
a contradiction. So e∈Q. Let f ∈SW \SQ (f exists because q is special and co-special).
Since U∩X=∅, f is adjacent to at most one of u,x, and then {q,u,x, sU,sX,a,e, f }
induces F9 or F10(8), a contradiction. This completes the proof of Theorem 1. �

6. RECOGNITION ALGORITHM

Our proof above yields a new recognition algorithm for path graphs, which takes any
graph G as input and either builds a clique path tree for G or finds one of F0, . . . ,F16

as an induced subgraph of G. We have not analyzed the exact complexity of such a
method but it is easy to see that it is polynomial in the size of the input graph. More
efficient algorithms were already given by Gavril [8], Schäffer [19], and Chaplick [4],
with complexity, respectively, O(n4), O(nm), and O(nm) for graphs with n vertices and
m edges. Another algorithm was proposed in [5] and claimed to run in O(n+m) time,
but it has only appeared as an extended abstract (see comments in [4, Section 2.1.4]).

There are classical linear time recognition algorithms for triangulated graphs [18],
and, following [2], there have been several linear time recognition algorithms for
interval graphs, of which the most recent is [10]. We hope that the work presented here
will be helpful in the search for a linear time recognition algorithm for path graphs.
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