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1. Introduction

A graph G is perfect if every induced subgraph H of G satisfies x (H) = w(H), where y (H) is the chromatic number of H
and w(H) is the maximum clique size on H. A graph is Meyniel [11] if every odd cycle of length at least five has at least two
chords. A Meyniel obstruction is an odd cycle of length at least five with at most one chord. Thus a graph is Meyniel if and
only if it does not contain a Meyniel obstruction as an induced subgraph. Meyniel [11] and Markosyan and Karapetyan [10]
proved independently that Meyniel graphs are perfect. Since an induced subgraph of a Meyniel graph is a Meyniel graph,
this theorem can be stated in the following way:

For any graph G, either G contains a Meyniel obstruction, or G has a clique and a coloring of the same size (or both).

This statement means that, for any graph G, exactly one of the following is satisfied (illustrated in Fig. 1):

e G contains a Meyniel obstruction and it does not have a clique and a coloring of the same size.
e G contains a Meyniel obstruction and it has a clique and a coloring of the same size.
e G contains no Meyniel obstruction and (consequently) it has a clique and coloring of the same size.

We give a polytime algorithm which finds, in any graph, an instance of what the Meyniel-Markosyan-Karapetyan
theorem says exists. That is, for any input graph, the algorithm finds either (a) a Meyniel obstruction or (b) a clique and
a coloring of the same size. When the graph happens to contain both (a) and (b), then the algorithm returns exactly one of
(a) or (b), not both, and we cannot predict which one.
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Fig. 1. The three different cases of the Meyniel-Markosyan-Karapetyan theorem.
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Fig. 2. The three different cases of Ravindra’s theorem.

This algorithm works in time © (n?) where n is the number of vertices of the input graph. This is an improvement in the
complexity of the algorithm of the first and second authors [4,5], which finds, in any graph, a clique and coloring of the same
size, or a Meyniel obstruction. This is an enhancement of the @ (n?) algorithm of Roussel and Rusu [15] which requires that
the input graph be Meyniel and returns only an optimal coloring.

This work is motivated by the “Perfect Graph Existential Polytime (EP) Problem” [3]: seek a polytime algorithm which,
for any graph G, finds either a clique and a coloring of the same size or an easily recognizable combinatorial obstruction to G
being perfect. A hole is a chordless cycle of length at least four. An antihole is the complementary graph of a hole. The Strong
Perfect Graph Theorem [7] states that a graph is perfect if and only if it contains no odd hole and no odd antihole. So a simple
obstruction to perfectness is the existence of an odd hole or odd antihole.

Astable set in a graph G is a set of vertices, no two of which are joined by an edge of G. A strong stable set [1] in G is a stable
set that contains a vertex of every maximal (by inclusion) clique of G. It is easy to see that a strong stable set is a maximal
(by inclusion) stable set (indeed, if some vertex v of G \ S had no neighbor in S, then every maximal clique that contains v
would be disjoint from S). Note that if one can find a strong stable set in every induced subgraph of a graph G, then one can
easily find an optimal coloring of G : if Sy is a strong stable set of G, S, is a strong stable set of G \ Sy, . . ., S¢ is a strong stable
setof G\ (S;U---US,_1),and S, is the last non-empty such set, then Sy, ..., S; is a coloring of G which is the same size as
some clique of G. This shows that if every induced subgraph of G has a strong stable set, then G is perfect.

Ravindra [13] presented the theorem that

For any graph G, either G contains a Meyniel obstruction, or G contains a strong stable set (or both).

The three cases that can occur are illustrated in Fig. 2.

Ravindra’s proof is an informal description of an algorithm which finds, in any graph, an instance of what the theorem
says exists.

Hoang [9] strengthened this to the following:

For any graph G and vertex v of G, either G contains a Meyniel obstruction, or G contains a strong stable set containing v
(or both).

Hoang [9] gives a © (n”) algorithm that finds, for any vertex of a Meyniel graph, a strong stable set containing this vertex.

A disadvantage of the Ravindra-Hoang theorem is that it is not an existentially polytime theorem. A theorem is called
existentially polytime (EP) if it is a disjunction of NP predicates which is always true [3]. The predicate “G contains a strong
stable set” may not be an NP-predicate because the definition of strong stable set is not a polytime certificate (since a graph
may have an exponential number of maximal cliques).

The Ravindra-Hoang theorem is strengthened in [4,5] to:

For any graph G and vertex v of G, either G contains a Meyniel obstruction, or G contains a nice stable set containing v
(or both),

where nice stable sets are a particular type of strong stable set which have the following polytime-certifiable meaning.
A nice stable set in a graph G is a maximal stable set S = {xq, ..., X}, such that, for every 1 < i < k there is no induced P,
between x;,1 and the vertex which arises from the contraction in G of x4, .. ., x;. (Contracting vertices X1, .. ., X; in a graph
means removing them and adding a new vertex x with an edge between x and every vertex of G\ {xq, . .., x;} that is adjacent
to at least one of x4, . . ., X;. As usual, P, denotes a path on four vertices.)

Note that every maximal stable set of cardinality 1 is a nice stable set. Note that a maximal stable set of cardinality 2 is
a nice stable set if and only if its vertices are not the endpoints of a P,. In particular, the highlighted stable sets, both in the
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Fig. 3. Example of an execution of Algorithm LEXCOLOR.

second and in the third graphs of Fig. 2, are nice stable sets, whereas in the second graph of Fig. 2, every maximal stable set
containing the vertex of degree two of the triangle is not strong and is not nice.

In Section 5, we show that a nice stable set is a strong stable set but that the converse is not true. The proof of the above
displayed theorem in [4,5] is a polytime algorithm which for any graph and any vertex in that graph, finds an instance of
what the theorem says exists. In Section 5, we give an @ (n*) algorithm for this, where n is the number of vertices of the
input graph.

2. The coloring algorithm

We recall the algorithm LEXCoLoR of Roussel and Rusu [15] which is a @ (n?) algorithm that colors optimally the vertices
of a Meyniel graph, thereby improving the complexity of previous coloring algorithms due to Hertz © (nm) [8] (where m is
the number of edges of the input graph), Hoang @ (n®) [9] and Ravindra [13].

LEXCOLOR is a greedy coloring algorithm. The integers 1, 2, ..., n are viewed as colors. For each vertex x of G and each
colorc € {1, 2, ..., n},we have alabel label, (c) defined as follows. If x has no neighbor colored c, then label, (c) is equal to 0;
if x has a neighbor colored c, then label,(c) is equal to the integer i such that the first neighbor of x colored c is the (n — i)-th
colored vertex of the graph. We consider the following (reverse) lexicographic order on the labels : label, </¢ label, if and
only if there exists a color ¢ such that labely(c) < label,(c) and V ¢’ > c, label,(c") = label,(c’). At each step, the algorithm
selects an uncolored vertex which is maximum for the lexicographic order of the labels, assigns to this vertex the smallest
color not present in its neighborhood, and iterates this procedure until every vertex is colored. More formally:

ALGORITHM LEXCOLOR
Input: A graph G with n vertices.
Output: A coloring of the vertices of G.
Initialization: For every vertex x of G and every color ¢ do labely(c) := 0;
General step: Fori =1, ..., ndo:
1. Choose an uncolored vertex x that maximizes label, for <jey;
2. Color x with the smallest color ¢ not present in its neighborhood;
3. For every uncolored neighbor y of x, if label, (c) := 0 do label,(c) :=n — i.

This coloring algorithm is optimal on Meyniel graphs and its complexity is @ (n?) [15].
Remark 1. This version of LEXCOLOR has a minor modification from the original version of Roussel and Rusu [15] . When
x has a neighbor colored c, the integer labely(c) was originally defined to be the integer i such that the first neighbor of x
colored c is the (n — i)-th vertex colored c of the graph (instead of the (n — i)-th colored vertex of the graph). For a color c,
the order between label,(c) of each vertex x is the same in the two versions of the algorithm, so the lexicographic order is

the same and there is no difference in the two executions of the algorithm. This modification only simplifies the description
of the algorithm.

Remark 2. The graph Pg is an example of a non-Meyniel graph on which Algorithm LEXCOLOR is not optimal. Fig. 3 shows a
possible execution of Algorithm LEXCOLOR on the graph Pg which gives a coloring with 4 colors although there is a coloring
with only 3 colors. Since Pg is a member of many families of perfect graphs (such as brittle graphs, weakly chordal graphs,
perfectly orderable graphs, etc; see [12] for the definitions), this algorithm will not perform optimally on these classes.

3. Finding a maximum clique

Given a coloring of a graph, there is a greedy algorithm that chooses one vertex of each color in an attempt to find a clique
of the same size.
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ALGORITHM CLIQUE
Input: A graph G and a coloring of its vertices using ¢ colors.
Output: A set Q that consists of £ vertices of G.
Initialization: Set Q := @J;
General step: Forc = ¢, ..., 1do:
Select a vertex x of color ¢ that maximizes N(x) N Q,do Q := Q U {x}.

Algorithm CLIQUE can be implemented in time @ (m + n).

We claim that when the input consists of a Meyniel graph G with the coloring produced by LEXCOLOR, then the output
Q of Algorithm CLIQUE is a clique of size £. This result is a consequence of the next section, where we show that when the
output of the algorithm is not a clique, we can find a Meyniel obstruction.

Remark. Given the coloring shown in Fig. 3, produced by Algorithm LEXCOLOR, as input for Algorithm CLIQUE, the set
Q ={f,a,d,b}(orQ = {f, a, d, c}) is returned.

4. Finding a Meyniel obstruction

Let G be a general (not necessarily Meyniel) graph on which Algorithm LEXCoLoR is applied. Let £ be the total number
of colors used by the algorithm. Then we apply Algorithm CLIQUE. At each step, we check whether the selected vertex x of
color c is adjacent to all of Q (this can be done without increasing the complexity of Algorithm CLIQUE by maintaining a
counter which for each vertex counts the number of its neighbors in Q ). If this holds at every step, then the final Q is a clique
of cardinality ¢, and so we have a clique and a coloring of the same size, which proves the optimality of both. If not, then
Algorithm CLIQUE stops the first time Q U {x} is not a clique and records the current color ¢ and the current clique Q. So we
know that no vertex colored c is adjacent to all of Q. Let us show now how to find a Meyniel obstruction in G. As usual, a
path is called odd or even if its length (number of edges) is respectively odd or even.

Let n, be the number of vertices colored ¢, and fori = 1, ..., n. let x; be the i-th vertex colored c. Let G* be the subgraph
of G obtained by removing the vertices of colors < c. Let G} be the graph obtained from G* by removing xq, ..., x; and
adding a new vertex w; with an edge to every vertex that is adjacent to one of x1, . . ., x; (in other words, vertices x1, ..., x;
are contracted into wy).

Let h < n. be the smallest integer such that every vertex of color > c has a neighbor in {xq, ..., x,}. Integer h exists
because n. has that property. There is a vertex a of Q that is not adjacent to x;, because x, is not adjacent to all of Q. Thus
h > 2. Note that a is adjacent to wy_1 in G;_;. There is a vertex b of Q that is adjacent to x, and not to wy_1, by the definition
of h. Then wy_1-a-b-x; is a chordless odd path in G _;.

Foranyi > 1, abad path is any odd path P = w;_1-v;-- - --vp in G such that v, = x;, path P has at most one chord, and
such a chord (if any) is v;_qv;yq With 1 < t < p — 1. Note that the path wy_1-a-b-x;, obtained at the end of the preceding
paragraph is a bad path.

A near-obstruction in G is any pair (P, z), where P is an odd path vo-- - --v,, with p > 3, P has at most one chord, such a
chord (if any) is vi—1ve41 With 0 < t < p — 1, vertex z is a vertex of G \ P that is adjacent to both vy, vp, and the pair (P, z)
satisfies one of the following conditions:

Type 1: vgv; is the only chord of P, and z is not adjacent to either of vq, v,.
Type 2: vqvs is the only chord of P, and z is not adjacent to one of vq, vs.

Type 3: vgv, is not a chord of P, and z is not adjacent to v;.

Type 4: vgv, and v;v3 are not chords of P, and z is adjacent to v; and not to v,.

The following lemmas show that the existence of a bad path is a certificate that the graph is not Meyniel. The proof of
the first lemma can easily be read as a linear-time algorithm which, given a bad path, finds explicitly a near-obstruction.
Likewise, the proof of the second lemma can easily be read as a linear-time algorithm which, given a near-obstruction, finds
explicitly an obstruction. Since G;_, contains the bad path wj,_;-a-b-x;, these two lemmas imply that G contains a Meyniel
obstruction.

Lemma 1. If G, contains a bad path, then G contains a near-obstruction.
Lemma 2. If G has a near-obstruction (P, z), then G has a Meyniel obstruction contained in the subgraph induced by P U {z}.

Proof of Lemma 1. Let P = w;_;-v;-- - --vp be a bad path in G}_,, with the same notation as in the definition of bad path.
We prove the lemma by induction on i. We first claim that:

(*) There exists a vertex z, colored before x; with a color > ¢, that is adjacent to x; and to w;_; in G}__; and satisfies the
following property. If vivs is the chord of P, then z is not adjacent to at least one of v; and vs. If v{v3 is not a chord of
P, then z is not adjacent to at least one of v; and v,.
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For let us consider the situation when the algorithm selects x; to be colored. Let U be the set of vertices of G} ; \ {w;_1} that
are already colored at that moment. We know that every vertex of G ; \ {w;—q} will have a color from {c,c + 1, ..., ¢}
when the algorithm terminates. So, if ¢ > 2, every vertex v of U satisfies V ¢’ < c, label,(c’) # 0.Forany X C U, let color (X)
be the set of colors of the vertices of X. Put T = N(x;) N U. Every vertex of T has a color > ¢ + 1, and so is adjacent to at
least one vertex colored c in G and thus is adjacent to w;_; in G_,. Specify one vertex v, of P as follows: put r = 3 if vqv3 is
a chord of P; else put r = 2. Note that v, is not adjacent to w;_; and v, # x; by the definition of bad path. Suppose the claim
is false: so every vertex of T is adjacent to v and v;.

Since every vertex of T is adjacent to v;, we have label,, (¢') > labely,(c’) for every color ¢’ > c. Since v; is adjacent to
w;_1, we have label,, (c) > 0. Since x; is colored c, we have label,,(c) = 0. So label,, >, labely,, which means that v is
already colored. Moreover, color (vy) ¢ {1, ..., c} U color(T).

Since every vertex of T is adjacent to v, we have label,, (c') > label,, (c’) for every color ¢’ > c. Since v, is adjacent to vy,
we have label,, (color (v1)) > 0. Since color(vy) ¢ {1, ..., c}Ucolor(T) we have labely, (color (v1)) = 0.So label,, > labely,,
which means that v, is already colored. However, v, is not adjacent to w;_1, so ¢ was the smallest color available for v, when
it was colored, which contradicts the definition of w;_; and x;. This completes the proof of Claim (*).

Now let z be a vertex given by Claim (*). (It takes time deg (x;) to find such a vertex z.)

Let j be the smallest integer such that both v; and z have a neighbor in {x4, ..., x;}. Then j < i because z and v, are
adjacent to w;_1.
Suppose that x; is adjacent to both vy and z. Then (x;-v;-- - --vp, Z) is a near-obstruction in G. Indeed, by Claim (*), it is

a near-obstruction of Type 2 if vqvs is the chord of P, of Type 3 if v;v3 is not a chord of P and z is not adjacent to v, or of
Type 4 if vyv3 is not a chord of P and z is adjacent to v; (and thus is not adjacent to v,).

Now suppose that x; is not adjacent to both v and z. Then the definition of j implies thatj > 1 and either (a)z is adjacent
to x; and not to wj_1, and v is adjacent to wj_; and not to x; or (b) v; is adjacent to x; and not to w;_;, and z is adjacent to
wj_1 and not to x;. In either case, let k be the smallest integer with k > 1 such that z is adjacent to vi. Such a k exists because
z is adjacent to vp.

Suppose that k is odd. If (a) holds, then let P’ = wj_1-vq-- - --v-z-;; if (b) holds, let P’ = wj_; -z-vj-- - --v1-X;. Then P’ is
an odd path and has at most one chord, which is the chord of P if it exists and if its two end-vertices are in P/, so P’ is a bad
path in G;‘_], and the result follows by induction.

Now suppose that k is even. Then k < p since p is odd. We consider the following cases:

Case 1: P has a chord vi_qveq1 witht < k. If (a) holds, then let P’ = wj_1-vy-- + --V;_1-V¢41-- - --Vk-2-X;; if (b) holds, let
P’ = wj_1-Z-Vk-- - --V41-V¢—1-- - --v1-X;. Then P’ is an odd chordless path, so P’ is a bad path in Gf_l, and the result follows
by induction.

Case 2: P has a chord vk_qv+1. When z is adjacent to both vi41 and vy, if (a) holds, then let P’ = wj_1-v1-+ - -Vg_1-Vkq1-

Uk2-2-X;j; if (b) holds, let P’ = wj_1-Z-Vg42-Vk41-Vk—1-- - --V1-X;; in either case, P’ is an odd path and has only one chord,
which is zvy 1, so P’ is a bad path in GJ’-"_l, and the result follows by induction. When z is not adjacent to vy1, then vi-- - --v,
is an odd chordless path, so (vi-- - --vp, z) is a near-obstruction of Type 3. When z is adjacent to v4¢ and is not adjacent to
Vg2, then vg-- - --v, is an odd chordless path, so (vg-- - --vp, z) is a near-obstruction of Type 4.

Case 3: P has a chord vyvy4,. When z is adjacent to vy, if (a) holds, then let P’ = wj_1-v1-- - --vg-vr41-2-%;; if (b) holds,
let P’ = wj_1-z-Vk41-Vk-- - --v1-%;; in either case, P’ is an odd path and has only one chord, which is zvy, so P’ is a bad path
in Gf,l. and the result follows by induction. When z is not adjacent to v, and is adjacent to vy, if (a) holds, then let
P’ = wj_1-v1-- - --Vg-Vg42-2-X;j; if (b) holds, let P’ = wj_1-z-Vy42-vk-- - --v1-X;; in either case, P’ is an odd path and has only
one chord, which is zvy, so P" is a bad path in G;‘_l, and the result follows by induction. When z is not adjacent to both vy 4
and v, then (vg-- - --vp, 2) is a near-obstruction of Type 1.

Case 4: P has no chord v;_1ve41 witht < k+ 1. When z is adjacent to vy44, if (a) holds, then let P’ = wj_1-v1-+ - - Vg-Vg41-
z-x;; if (b) holds, let P’ = wj_1-z-vy41-vk-- - --v1-X;; in either case, P’ is an odd path and has only one chord, which is zvy, so
P’ is a bad path in G]tl, and the result follows by induction. When z is not adjacent to vy1, then vy-- - --v, has at most one
chord, which is the chord of P if it exists, so (v~ - --vp, Z) is a near-obstruction of Type 3. This completes the proof of the
last case. O

Let us discuss the complexity of the algorithmic variant of this proof. When we find a new bad path, the value of i decreases
by at least 1, and so this happens at most n. times. Dealing with one bad path takes time ©(deg(x;) + deg(z)) (for the
corresponding i), and x; is different at each call since i decreases. Vertex z is also different at each call, because z becomes
a vertex of the new bad path. When the algorithm produces a new bad path to be examined, it also tells if the path has no
chord or one chord, and what the chord is (if it exists); so we do not have to spend any time to find this chord. So the total
complexity of this algorithm is @ (m + n).

Proof of Lemma 2. We use the same notation for P as in the definition of near-obstruction. We prove the lemma by
induction on p. If p = 3, then the hypothesis implies immediately that P U {z} induces an obstruction. Now let p > 5.
If (P, z) is a near-obstruction of Type 1, 2 or 3, then let r be the smallest integer > 1 such that z is adjacent to v,. If (P, z) is
of Type 4, then let r be the smallest integer > 3 such that z is adjacent to v,.

First assume that (P, z) is a near-obstruction of Type 1. Sor > 3.If r is odd, then z, vy, ..., v, induce an odd cycle with
only one chord vguv,. If r is even, then z, vg, vy, . .., v, induce an odd hole.
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Now assume that (P, z) is a near-obstruction of Type 2.

Case 2.1: z is not adjacent to either of vq, vo. Sor > 3.If r is odd, then z, vy, . .., v, induce an odd cycle with only one
chord vyvs. If ris even, thenr > 4, and z, vy, v1, v3, ..., v, induce an odd hole.

Case 2.2: z is not adjacent to vy and is adjacent to v,. Sor = 2.If z is not adjacent to vs, then z, vy, vq, v3, V2 induce an odd
cycle with only one chord v;v,. So suppose z is adjacent to vs. If z is also adjacent to v4, then z, vy, v1, v3, v4 induce an odd
cycle with only one chord zvs. If z is not adjacent to v4. Consider the path P’ = v;-- - --v,. Then P’ is an odd chordless path
and |[P'| = |P| —r, so (P’, z) is a near-obstruction of Type 4, and the result follows by induction.

Case 2.3: z is adjacent to v1. So r = 1, z is not adjacent to vs by the definition of Type 2. Consider the path P’ = vq-v3-- - --
vp. Then P’ is an odd chordless path and |P'| = |P| —r — 1, s0 (P’, ) is a near-obstruction of Type 3, and the result follows
by induction.

Now assume that (P, z) is a near-obstruction of Type 3. If r is odd, then z, vy, ..., v, induce an odd cycle with at most
one chord. If r is even, we consider the following cases:

Case 3.1: P has a chord vi_qv;+q witht < r.Thenz, v, ..., Vt—1, Vtt1, ..., Uy induce an odd hole.

Case 3.2: P has a chord v,_1v;41. If z is not adjacent to v, 1, then z, vy, .. ., v;_1, Vr41, U, in this order induce an odd cycle
with only one chord v;_v;. So suppose z is adjacent to v, 1. If z is also adjacent to v,,, then z, vo, ..., Ur_1, Ur41, Urs2
induce an odd cycle with only one chord zv, 4. If z is not adjacent to v, ,, then p > r 4 3. Consider the path P’ = v,-- - --vj,.
Then P’ is an odd chordless path and |P'| = |P| — r, so (P, z) is a near-obstruction of Type 4, and the result follows by
induction.

Case 3.3: P has a chord v, v, . If z is adjacent to v,1, then z, v, ..., v+ induce an odd cycle with only one chord zv,.
So suppose z is not adjacent to v, 1. If z is adjacent to v.,, then z, vy, .. ., v;, vr43 induce an odd cycle with only one chord
zvr. If z is not adjacent to v,,, then p > r 4 3. Consider the path P’ = v,-- - --v,. Then v, v, is the unique chord of the odd
path P’ and |P’| = |P| — r,so (P’, z) is a near-obstruction of Type 1, and the result follows by induction.

Case 3.4: P has no chord v_qv;41 witht < r 4 1. If z is adjacent to v.41, then z, v, ..., v;41 induce an odd cycle with
only one chord zv,. If z is not adjacent to v, 4, then consider the path P’ = v,-- - --v,. Then P’ is an odd path with at most
one chord, which is the chord of P (if it exists) and |[P’| = |P| — r, so (P, z) is a near-obstruction of Type 3, and the result
follows by induction.

Now assume that (P, z) is a near-obstruction of Type 4.

Suppose that P has a chord v;_jv;y; with2 < t < r.Ifris odd, thenz, vy, ..., v¢_1, Vty1, ..., Uy induce an odd hole. If
riseven, thenz, vy, ..., v, induce an odd cycle with only one chord v;_1v;41.

Now P has no chord v;_1v41 with2 < t < r.Ifr is odd, then z, vy, . . ., v, induce an odd cycle with only one chord zv;.
If r is even, then z, vy, .. ., v, induce an odd hole. This completes the proof of the four cases. O

In the algorithmic variant of this proof, each recursive call happens with the same vertex z, so we need only run once
through the adjacency array of z. Note that the first near-obstruction is produced by the algorithm of Lemma 1, so we already
know if P has no chord or one chord, and what its chord is, if it exists. Computing the value of r takes time @ (r), and the rest
of each call takes constant time. At each call, either a Meyniel obstruction is output, or a near-obstruction (P’, z) is obtained.
Note that |P’| < |P| — r, and we know if P’ has no chord or one chord, and what its unique chord is (if it exists); so we do
not have to spend any time to find this chord. So the total running time is @ (|P| + degp(z)) (where degp(z) is the number
of vertices of P that are adjacent to z).

Algorithms LEXCoLOR and CLIQUE run in time O (n?) and @ (n 4 m) respectively, so the total time for finding, in any graph,
either a clique and a coloring of the same size, or a Meyniel obstruction is @ (n?).

Remark. As mentioned earlier, the execution of Algorithm LEXCOLOR on the graph Pg is not optimal. Given the coloring
shown in Fig. 3, Algorithm CLIQUE will stop on color 1 and clique Q = {f, a, d}. We observe that no vertex of color 1 is
adjacent to all Q, because vertex c is not adjacent to d and b is not adjacent to a. So c-a-d-b is a chordless path of length
three between c and b. Vertex ¢ was colored before d because of e, which is not adjacent to d, and the algorithm will return
the Meyniel obstruction induced by {c, a, d, b, e} (which is a cycle of length five with only one chord ae).

5. Strong stable sets

In this section, we show that, in the case of a Meyniel graph, the set of vertices colored 1 by Algorithm LEXCOLOR is a
strong stable set. But there are non-Meyniel graphs for which Algorithm LEXCoLor and Algorithm CLIQUE give a coloring
and a clique of the same size but none of the color classes of the coloring is a strong stable set (see the example at the end
of this section). In that case we would like to be able to find a Meyniel obstruction. We describe below a ©(n®) algorithm
that, for any graph G and vertex v of G, finds a Meyniel obstruction or a nice stable set containing v.

Lemma 3. Every nice stable set is a strong stable set.

Proof. LetS = {xq, ..., x;} be a nice stable set of a graph G. Suppose there exists a maximal clique Q withQ NS = @. Let G'
be the graph obtained from G by contracting x1, . . ., x; into w;. Fori = 1, ..., k, consider the following Property P': “In the
graph G, vertex w; is adjacent to all of Q.” Note that Property P¥ holds by the maximality of S and by the definition of wy,
and that Property P! does not hold by the maximality of Q. So there is an integer i € {2, ..., k} such that P! holds and Pi~!
does not. Vertex x; is not adjacent to all of Q by the maximality of Q. So, in the graph G, the clique Q contains vertices a
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Fig. 4. Example of an execution of Algorithm LEXCOLOR.

and b such that a is adjacent to w;_; and not to x; and b is adjacent to x; and not to w;_1, and then the path w;_1-a-b-x; is a
P4, which contradicts the property that S is nice. O

Now, for any graph G and any vertex v of G, we can find a Meyniel obstruction or a strong stable set containing v by the
following algorithm:

Apply the algorithm LEXCOLOR on a graph G, choosing v to be the first vertex to be colored. Let S = {sy, ..., s;, } be the

set of vertices colored 1. So S is a maximal stable set. We can check in time © (n®) whether S is a nice stable set. If S is a nice
stable set, then S is a strong stable set by Lemma 3. If S is not a nice stable set, then the checking procedure returns some
i € {2,...,n¢}such that there is an induced path t;_;-a-b-s;, where t;_ is the vertex obtained by contracting s, ..., Sj_1.
Applying the procedure described in Lemmas 1 and 2 of Section 4 to this bad path t;_;-a-b-s; gives a Meyniel obstruction
in G.
Remark. The graph in Fig. 4 is an example of a non-Meyniel graph for which Algorithm LExCoLor followed by Algorithm
CLIQUE can give a coloring and a clique of the same size but none of the color classes of the coloring is a strong stable set.
Given the coloring shown in Fig. 4, Algorithm CLIQUE can output the clique {e, i, a}. None of the color classes is a strong stable
set (vertices colored 1 miss the maximal clique {b, c}, vertices colored 2 miss the maximal clique {e, f}, and vertices colored
3 miss the maximal clique {a, b}). Vertices a, f, h are colored 1 in this order. Let (af) be the contraction of a and f. The bad
path found by the algorithm is (af )-b-c-h; this is the P4 between (af) and h that shows that a, f, h is not a nice stable set.
Vertex g is a neighbor of (af) and h that causes f to be colored before c. When decontracting (af ), vertex f is still adjacent to
g and b, so the algorithm will output the Meyniel obstruction induced by {f, b, c, h, g} (which is a cycle of length five with
only one chord bg). This graph contains a strong stable set b, e, h that is not nice. On the graph in Fig. 4, Algorithm LEXCOLOR
can color the vertices in the order b, f, g, h, e, a, i, c, d, and the set of vertices colored 1 is {b, e, h}, which is a strong stable
set but not a nice stable set (because all three pairs {b, e}, {b, h} and {e, h} are respectively endpoints of P,’s).

6. Comments

The algorithms presented here are not recognition algorithms for Meyniel graphs. It can happen that the input graph is
not Meyniel and yet the output is a clique and a coloring of the same size.

The fastest known recognition algorithm for Meyniel graph is due to Roussel and Rusu [14] and its complexity is
O (m(m+n)), (where n is the number of vertices and m is the number of edges), which beats the complexity of the algorithm
of Burlet and Fonlupt [2]. So it appears to be easier to solve the Meyniel Graph EP Problem than to recognize Meyniel graphs.
It could be the same for perfect graphs: it might be simpler to solve the Perfect Graph EP Problem than to recognize perfect
graphs. Currently, the recognition of perfect graphs is done by an @ (n°) algorithm due to Chudnovsky et al. [6] which actually
recognizes Berge graphs (graphs that contain no odd hole and no odd antihole). The class of Berge graphs is exactly the class
of perfect graphs by the Strong Perfect Graph Theorem of Chudnovsky et al. [7].
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