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Traffic grooming in a WDM network consists of assigning to each request (lightpath) a
wavelength with the constraint that a given wavelength can carry at most C requests or
equivalently a request uses 1/C of the bandwidth. C is known as the grooming ratio. A
request (lightpath) needs two SONET add-drop multiplexers (ADMs) at each end node;
using grooming, different requests can share the same ADM. The so called traffic grooming
problem consists of minimizing the total number of ADMs to be used (in order to reduce
the overall cost of the network). Here we consider the traffic grooming problem in WDM
unidirectional rings which has been recently shown to be APX-hard and for which no
constant approximations are known. We furthermore suppose an all to all uniform unitary
traffic. This problem has been optimally solved for specific values of the grooming ratio,
namely C = 2, 3, 4, 5, 6. In this paper we present various simple constructions for the
grooming problem providing approximation of the total number of ADMs with a small
constant ratio. For that we use the fact that the problem corresponds to a partition of the
edges of the complete graph into subgraphs, where each subgraph has at most C edges
and where the total number of vertices has to be minimized.

Keywords: Traffic Grooming; WDM Networks; ADM; Unidirectional Rings; Approxima-
tion; Designs; Partition of graphs.
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1. Introduction

Traffic grooming is the generic term for packing low rate signals into higher speed
streams (see the surveys 7,14,22,24,30,21). By using traffic grooming, one can bypass the
electronics in the nodes for which there is no traffic sourced or destinated to it and
therefore reduce the cost of the network. Typically, in a WDM (Wavelength Division
Multiplexing) network, instead of having one SONET Add Drop Multiplexer (ADM)
on every wavelength at every node, it may be possible to have ADMs only for the
wavelength used at that node (the other wavelengths being optically routed without
electronic switching).

In SONET/WDM networks, we assign to each request {i, j} a fraction of the
bandwidth offered by a wavelength along a path from node i to node j. If a given
wavelength can carry at most C requests, we can assign to each request at most
1
C of the bandwidth. C is known as the grooming ratio. In the particular case of
unidirectional rings, the routing is unique. Furthermore, if the traffic is symmetric, it
can be easily shown (by exchanging wavelengths) that there always exists an optimal
solution in which the same wavelength is given to a pair of symmetric requests. Then,
without loss of generality, we will assign to each pair of symmetric requests, called
a circle, a fraction of the bandwidth in the whole ring. In both cases, we need one
ADM at node i and one at node j. Also, two requests with a common extremity
and assigned to the same wavelength will share an ADM. For example, if requests
{1, 2} and {2, 3} are assigned to two different wavelengths, then we need 4 ADMs,
while if they are assigned to the same wavelength we will need only 3 ADMs.

The so called traffic grooming problem consists of minimizing the total number
of ADMs to be used (in order to reduce the overall cost of the network). Here we
study the problem for an unidirectional SONET ring with N nodes, a grooming
ratio C, and an all-to-all uniform unitary traffic. This problem has been modeled
as a graph partition problem in both 6 and 18. The set of requests is modeled by
a graph I, where I = KN in the all-to-all case. To a wavelength w is associated
a subgraph Bw in which each edge corresponds to a request and each node to an
ADM. The grooming constraint, that a wavelength can carry at most C requests,
corresponds to the fact that the number of edges |E(Bw)| of each subgraph Bw is
at most C. The objective is therefore to minimize the total number of vertices used
in the subgraphs.

Problem 1.1 (Grooming on unidirectional cycle 6) Given a number of nodes
N and a grooming ratio C find a partition of the edges of the undirected graph I =
KN into subgraphs Bw, w = 1, . . . ,W with |E(Bw)| ≤ C such that

∑
1≤w≤W |V (Bw)|

is minimum.(This minimum will be denoted A(C,N)).

The traffic grooming problem has recently been extensively studied on uni-
directional WDM rings, primarily in the context of variable traffic require-
ments 10,13,18,25,28, but the case of fixed traffic requirements has served as an impor-
tant special case 3,4,5,6,7,8,14,16,17,19,20,22,26,29. The problem has also been studied on
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Table 1. Approximation factor of the different constructions.

C 8 9 12 15 16 28 32 48 64 192

ρmax(C) 8
5

9
5 2 5

2
5
2

7
2

32
9

9
2

16
3

19
2

γ for Cons. 4.1 1.6 1.2 1.33 1.67 1.25 1.4 1.42 1.5 1.33 1.46

γ for Cons. 4.4 1.2 1.2 1.17 1.33 1.25 1.37 1.3 1.31 1.33 1.39

γ for Cons. 5.1 1.6 1.8 1 1.25 1.25 1.17 1.19 1.13 1.33 1.19

the path 2.
With a general set of requests, I �= KN , the grooming problem has been proved

NP-Complete in unidirectional ring with grooming factor C ≥ 1 10,23. Then a first
approximation algorithm for computing the total number of ADMs with approx-

imation factor
C

(
1+ 1

�C/2�
)

⌈
1+

√
1+8C
2

⌉ , i.e. ∼ √
C, has been given in 18, and in 15 a log(C)-

approximation algorithm has been obtained. More recently, the grooming problem
has been proved APX-Hard in 1 (i.e. there exists a constant c, such that Problem 1.1
can not be approximate within a factor c).

With the all-to-all set of requests, I = KN , the extremal problem of finding the
exact value of A(C,N) is open and there is not even a conjecture for the extremal
constructions. Optimal constructions for given grooming ratio C were obtained using
tools of graph and design theory 7,11,12, in particular for grooming ratio C = 3 3,
C = 4 19,8, C = 5 5, C = 6 4 and C ≥ N(N − 1)/6 8. However it will be a very long
and intractable task to find optimal constructions for all grooming ratio. Existing
heuristic algorithms 17,26,29 as well as the approximation algorithm proposed in 15,18

are not satisfactory for the all-to-all case. Therefore, it is important to show that in
this case we have approximation algorithms with a small approximation ratio.

In this paper, we will first present an asymptotical 1+ 4C
N +o

(
1
N

)
-approximation

algorithm; unfortunately the construction is valid only for large N . Then we
present a very simple construction using bipartite graphs which provides a γ(C,N)-
approximation for the total number of ADMs, where γ(C,N) is at most

√
2

√
C

�√C�
and in many cases better (for example, for C = 16: γ(16, N) = 5

4 , and for C = 64:
γ(64, N) = 4

3). Then we show several improvements of this construction by using

other bipartite graphs or tripartite graphs (in that case γ(C,N) is of order
√

3
2)

or multipartite graphs. Values of the approximation factor obtained with different
constructions are given in Table 1 for realistic values of C.

2. Lower Bound

A tight lower bound for Problem 1.1 has been given in 6,8 and is recalled in The-
orem 2.1. The idea consists in using in the partition subgraphs which, for a given
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number of edges (less than C), have the minimum number of vertices. So let us de-
note by ρ(G) the ratio of a subgraph G, ρ(G) = |E(G)|

|V (G)| , and by ρ(m) the maximum
ratio of a subgraph with m edges. Let finally ρmax(C) denote the maximum possible
ratio among all the subgraphs with m ≤ C edges, that is:

ρmax(C) = max {ρ(G) | |E(G)| ≤ C} = max
m≤C

ρ(m) (2.1)

Recall that A(C,N) is the minimum number of ADM’s needed in an unidi-
rectional ring with the all-to-all set of request (I = KN ) and with a grooming
ratio C. A(C,N) =

∑
1≤w≤W |V (Bw)|; so using ρmax(C)|V (Bw)| ≥ |E(Bw)| and∑

1≤w≤W |E(Bw)| = N(N−1)
2 we get the following lower bound:

Theorem 2.1 (Lower Bound 6) A(C,N) ≥ N(N−1)
2ρmax(C) .

The value of ρmax(C) has been evaluated in 6 and is recalled in Proposition 2.1.

Proposition 2.1 (6)

• If x(x−1)
2 ≤ C ≤ (x+1)(x−1)

2 , then ρmax(C) = x−1
2 and the value is attained

for Kx.
• If (x+1)(x−1)

2 < C < (x+1)x
2 , then ρmax(C) = C

x+1 and the value is attained
for any graph with C edges and x + 1 vertices.

Values of ρmax(C) are given in Table 1 for realistic values of C. The following
corollary gives also a lower bound easier to manipulate.

Corollary 2.1. ρmax(C) ≤
√

C
2 and so A(C,N) ≥ N(N−1)√

2C
.

Proof. From Proposition 2.1, we know that ρmax(C) = x−1
2 (case 1) or C

x+1 (case

2), and we can observe that x =
⌊

1+
√

1+8C
2

⌋
. Thus we have

• case 1 : 2ρmax(C) =
⌊

1+
√

1+8C
2

⌋
− 1 ≤

⌊√
1+8C−1

2

⌋
≤

√
8C
2 ≤ √

2C and so

ρmax(C) ≤
√

C
2

• case 2 : ρmax(C) = C⌊
1+

√
1+8C
2

⌋
+1

≤ C
1+

√
1+8C
2

≤
√

C
2

So A(C,N) ≥ N(N−1)√
2C

.

3. Asymptotic Construction

It has been shown in 6 that design theory can help to solve the grooming problem. In
particular, a G-design of order N (see 11 VI.24 or 9) is nothing else than a partition
of the edges of KN into subgraphs isomorphic to a given graph G. The interest of
the existence of a G-design is shown by the following immediate proposition.



January 5, 2009 16:35 WSPC/INSTRUCTION FILE join-final-ws

Approximations for All-to-all Uniform Traffic Grooming on Unidirectional Ring 475

Proposition 3.1 (6) If there exists a G-design of order N , where G is a graph with
at most C edges and with ratio ρmax(C), then A(C,N) = N(N−1)

2ρmax(C) .

Necessary conditions 3.1 (Existence of a G-design) If there exists a G-
design, then

(i) N(N−1)
2 should be a multiple of E(G)

(ii) N − 1 should be a multiple of the greatest common divisor of the degrees of
the vertices of G.

It has been shown that these conditions are sufficient for C = 3, 6, 10: G being
the complete graph K3, K4, or K5 (in that case we have a “classical design”, see 11

chapter II.3), and also for C = 15 (N ≥ 802): G being K6. They are also sufficient for
C = 4, 5, 8 (N �= 48), 9 (N ≥ 235) (see 11 chapter VI.24). More generally, Wilson 27

has shown that these necessary conditions are sufficient for any C when N is large
enough. So we have the following Theorem:

Theorem 3.1 (see 6) We have

• A(3, N) = N(N−1)
2 when N ≡ 1 or 3 mod 6

• A(4, N) = N(N−1)
2 when N ≡ 0 or 1 mod 8

• A(5, N) = 2N(N−1)
5 when N ≡ 0 or 1 mod 5

• A(6, N) = A(7, N) = N(N−1)
3 when N ≡ 1 or 4 mod 12

• A(8, N) = 5N(N−1)
16 when N ≡ 0 or 1 mod 16, and N �= 48

• A(9, N) = 5N(N−1)
18 when N ≡ 0 or 1 mod 9, and N ≥ 235

• A(10, N) = N(N−1)
4 when N ≡ 1 or 5 mod 20

• A(15, N) = A(16, N) = N(N−1)
5 when N ≡ 1 or 6 mod 15, and N ≥ 802

Construction 3.1. For a given C, let N2 ≥ N be the smallest integer such that
there exists a G-design where G has at most C edges and a ratio ρmax(C). We obtain
a valid construction for N by removing N2 −N nodes and the corresponding edges
from the optimal construction for N2.

In order to get an approximation factor of this solution, we need to know a lower
bound for A(C,N). A trivial lower bound is given by A(C,N1), where N1 ≤ N is
the biggest integer such that there exists a G-design.

The following lemma allows to find values of N1 and N2 that are near to each
other.

Lemma 3.1. Let α(C) be defined as follows :

• If x(x−1)
2 ≤ C ≤ (x+1)(x−1)

2 , then α(C) = x(x − 1).
• If (x+1)(x−1)

2 ≤ C < (x+1)x
2 , then α(C) = 2C

Let N1 = α(C)t + 1 and N2 = α(C)(t + 1) + 1 be such that N1 ≤ N ≤ N2.
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There always exists a graph G with at most C edges and ratio ρmax(C) which
satisfies Conditions 3.1 for N1 and N2.

Proof. When x(x−1)
2 ≤ C ≤ (x+1)(x−1)

2 , then ρmax(C) is attained for Kx, and so
let G = Kx. Both N1 − 1 and N2 − 1 are multiple of α(C) = x(x − 1); and so
the number of edges of KN1 (resp. KN2)

N1(N1−1)
2 (resp. N2(N2−1)

2 ) is a multiple of
E(G) = x(x−1)

2 . Condition (ii) is also satisfied as the degree of a vertex of KN1 (resp.
KN2) N1 − 1 (resp. N2 − 1) is a multiple of x − 1 the degree of Kx.

When (x+1)(x−1)
2 ≤ C < (x+1)x

2 , then ρmax(C) is attained for any graph with
C edges and x + 1 vertices. Let r = (x+1)x

2 − C. So 0 < r < x. Let G be the
graph obtained from Kx+1 by removing the edges of a path of length r. G has C

edges and so Condition (i) is satisfied as N1(N1−1)
2 = (2Ct + 1)Ct and N2(N2−1)

2 =
(2C(t + 1) + 1)C(t + 1) are multiples of E(G). As 0 < r ≤ x − 1, G has a vertex
which is not in the path that have been removed; this vertex has degree x, and the
extremities of the path have degree x − 1, so the greatest common divisor of the
degrees of the vertices of G is 1. Condition (ii) is trivially satisfied.

Proposition 3.2. When N is large enough to satisfy Wilson’s Theorem, Construc-
tion 3.1 has an approximation factor γ(C,N) ≤ 1 + 4C

N + o
(

1
N

)
.

Proof. Let f(C,N) denotes the number of ADMs obtained by Construction 3.1
and let γ(C,N) = f(C,N)

A(C,N) be its approximation factor. Let also N1 and N2, with
N1 ≤ N ≤ N2, be given by Lemma 3.1. We have A(C,N1) ≤ A(C,N) ≤ f(C,N) ≤
A(C,N2) and γ(C,N) = f(C,N)

A(C,N) ≤ A(C,N2)
A(C,N1) = N2(N2−1)

N1(N1−1) .

Since N2 = α(C)(t + 1) + 1 = N1 + α(C), we have γ(C,N) ≤ 1 + 2α(C)
N1

+
α(C)(α(C)+1)

N1(N1−1) .
Finally, as in both cases α(C) ≤ 2C and N − N1 ≤ α(C), we obtain γ(C,N) ≤

1 + 4C
N + o

(
1
N

)
.

Unfortunately, except for the small values of C given in Theorem 3.1, the values
of N for which Wilson’s Theorem and so Proposition 3.2 applies are very large.
Furthermore, it is not known how to implement Construction 3.1 in polynomial
time. So there is a need to find simpler and general constructions.

4. Construction using Bipartite Graphs

In this section, we first present a simple construction which gives an upper bound on
the number of ADM’s and we analyze it’s approximation factor. Then, we present
some improvements of this construction.

Basically our construction consists of partitioning the edges of KN into a maxi-
mum number of bipartite graphs, with at most C edges, plus some small complete
graphs. A complete-bipartite graph with 2 sets of p nodes each has p2 edges and a
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ratio of p
2 . Therefore choosing p2 to be C or almost C we get a ratio near to

√
C
2 .

As we will see in the proof of Proposition 4.1, the number of ADMs due to bipartite
graphs dominates the total cost of the construction, and so the number of ADMs will
be around N(N−1)√

C
. From Theorem 2.1 we know that the lower bound is larger than

N(N−1)
2ρmax(C) . So our construction gives an approximation factor close to 2ρmax(C)√

C
≤ √

2
by Corollary 2.1.

Several constructions are possible. We first present a basic construction (Con-
struction 4.1) and then some improvements (Constructions 4.2 and 4.3) in order
to have a precise approximation factor. We also give a variant in which C is the
product of two numbers.

4.1. Basic construction

Construction 4.1.
Let C = p2 + p′, 0 ≤ p′ ≤ 2p (p = �√C�); let N = qp + r, 0 ≤ r < p, and let the

vertices of KN be V = ∪q
i=1Vi ∪ Vq+1 with |Vi| = p and |Vq+1| = r.

We partition the edges of KN into q(q−1)
2 Kp,p on Vi ∪ Vj, 1 ≤ i < j ≤ q, plus q

Kp,r on Vi ∪ Vq+1, 1 ≤ i ≤ q, plus q Kp on Vi and one Kr on Vq+1 .

Proposition 4.1. Construction 4.1 is valid and uses (q + 1)N ADMs.

Proof. First all the subgraphs of the decomposition have at most p2 ≤ C edges.
Since a bipartite graph Kx,y has x + y vertices and a complete graph Kx has x

vertices, the number of ADMs involved in the construction is: 2p q(q−1)
2 + (p + r)q +

qp + r = (q + 1)(qp + r) = (q + 1)N ADMs.

Corollary 4.1. When C = p2 + p′, 0 ≤ p′ ≤ 2p, and N = qp + r, 0 ≤ r < p,
Construction 4.1 provides a

2ρmax(C)

�√C� + O
(

1
N

)
<

√
2

√
C

�√C� + O
(

1
N

)
-approximation of the number of ADMs.

Proof. Let γ(C,N) be the approximation factor that is the ratio between the upper
bound construction and the lower bound for a given grooming factor C. We know
from Theorem 2.1 that A(C,N) ≥ N(N−1)

2ρmax(C) . So

γ(C,N) = (q + 1)N
2ρmax(C)
N(N − 1)

= 2ρmax(C)
q + 1
N − 1

(4.1)

Since C = p2 + p′, we have p =
⌊√

C
⌋

and q = N−r
p = N−r

�√C� . Thus we obtain

γ(C,N) =
2ρmax(C)⌊√

C
⌋


1 +

⌊√
C

⌋
− r + 1

N − 1


 (4.2)
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4.2. Improvements

The above construction is very simple and provides a better approximation factor
than 15. The values of the approximation factor for some values of C are indicated
in Table 1. A first improvement can be obtained by noting that some bipartite
subgraphs of the decomposition have strictly less than C edges and therefore we can
add to them some edges of the Kp’s and of the Kr. That is always the case for the
Kp,r as pr < p2 ≤ C and also for the Kp,p when C > p2. Doing so we can get rid of
the O

(
1
N

)
in Corollary 4.1.

Construction 4.2. Let C = p2 and N = qp + r, 0 < r < p.
The construction consists of partitioning the edges of KN into q(q−1)

2 Kp,p on
Vi ∪ Vj, 1 ≤ i < j ≤ q, plus q subgraphs on Vi ∪ Vq+1, 1 ≤ i ≤ q containing the pr

edges of the Kp,r between Vi and Vq+1 plus the p(p−1)
2 of the Kp on Vi and some

edges of the Kr on Vq+1.

Proposition 4.2. Let C = p2 and N = qp + r, 0 < r < p. If r(r−1)
2 ≤

q
(
C − pr − p(p−1)

2

)
, Construction 4.2 is valid and provides a 2ρmax(C)√

C
≤ √

2-
approximation of the total number of ADMs.

Proof. The subgraphs Kp,p have p2 = C edges. Each other subgraph contains the
pr edges of the Kp,r between Vi and Vq+1 plus the p(p−1)

2 of the Kp on Vi. So we can
still use C − pr − p(p−1)

2 > 0 edges of the Kr on Vq+1; and altogether we can use all

the edges of Kr as r(r−1)
2 ≤ q

(
C − pr − p(p−1)

2

)
.

Construction 4.2 uses q(q− 1)p + q(p + r) = q(qp + r) = qN ADMs. So it has an
approximation factor

γ(C,N) = qN 2ρmax(C)
N(N−1) = 2ρmax(C)

p
N−r
N−1 . Since C = p2, we have γ(C,N) =

2ρmax(C)√
C

(
1 − r−1

N−1

)
, and since 0 < r, we obtain γ(C,N) ≤ 2ρmax(C)√

C
≤ √

2.

This strategy allows us to win a small amount of ADMs (at most N). For exam-
ple, when C = 16, p = 4, and q = 4, conditions of Construction 4.2 are satisfied for
r = 1 and 2, so N = 17 and N = 18. For N = 17 (resp. N = 18), Construction 4.1
uses 5× 17 = 85 (resp. 5× 18 = 90) ADMs and Construction 4.2 uses 68 (resp. 72)
ADMs, that is a saving of 17 (resp. 18) ADMs.

When C = p2+p′, it is possible to improve Construction 4.2 by adding some edges
of Kr and of the Kp’s to the subgraphs containing the bipartite graphs, thus reducing
the total number of ADMs. In some cases, the subgraphs based on Kp or Kr may
be completely absorbed as explained in the Construction 4.3 and Proposition 4.3.

Construction 4.3. Let C = p2 + p′, 0 < p′ ≤ 2p and N = qp + r, 0 ≤ r < p.
The construction consists of partitioning the edges of KN into q(q−1)

2 subgraphs
on Vi ∪ Vj, 1 ≤ i < j ≤ q containing the p2 edges of the Kp,p between Vi and Vj plus
some edges of one of the Kp, plus q subgraphs on Vi ∪ Vq+1, 1 ≤ i ≤ q containing
the pr edges of the Kp,r between Vi and Vq+1 plus some edges of the Kr on Vq+1.
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Proposition 4.3. Let C = p2 + p′, 0 < p′ ≤ 2p and N = qp + r, 0 ≤ r < p.
If (q − 1)p′ ≥ p(p − 1), then Construction 4.3 is valid and provides a 2ρmax(C)

�√C� ≤
√

2
√

C

�√C�-approximation of the total number of ADMs.

Proof. The subgraphs on Vi ∪ Vj, 1 ≤ i < j ≤ q use the p2 edges of Kp,p and p′

edges of one of the Kp. Altogether we can use all the edges of the Kp as by the
condition q(q−1)

2 p′ ≥ p(p−1)
2 q. In each Kp,r we can use p2 + p′ − pr = p(p − r) + p′

edges of the Kr. Since we have q Kp,r and that qp′ > (q − 1)p′ > p(p − 1) > r(r−1)
2 ,

all edges of Kr are used.
Construction 4.3 uses q(q − 1)p + q(p + r) = q(qp + r) = qN ADMs. So it has

the desired approximation factor.

Note that condition of Proposition 4.3 is satisfied as soon as q ≥ p(p − 1), that
is N ≥ p2(p − 1).

Remark that in some cases the approximation factor can be strictly larger than√
2 due to the integer part of

√
C. For example if C = 8, �√C� = 2 but ρmax(C) = 8

5

and the approximation factor is 8
5 = 1.6 >

√
2. For C = 15, �√C� = 3, ρmax(C) = 5

2

and the approximation factor is 5
3 .

4.3. Case C = p1p2

The next construction helps to deal with these cases where C = p1p2.

Construction 4.4. Let C = p1p2+p′, p1 ≤ p2; let also N = qp1p2+r, 0 ≤ r < p1p2.
Let the vertices of KN be V = ∪q

i=1Vi ∪ Vq+1 with |Vi| = p1p2 and |Vq+1| = r.
We partition the edges of KN into q(q−1)

2 Kp1p2,p1p2 on Vi ∪ Vj , 1 ≤ i < j ≤ q,
plus q Kp1p2,r on Vi ∪ Vq+1, 1 ≤ i ≤ q, plus q Kp1p2 on Vi and one Kr on Vq+1.

Then we partition each Kp1p2,p1p2 into p1p2 Kp1,p2 and each Kp1p2,r, where r =
α1p1 + β1, 0 ≤ β1 < p1, into p1α1 Kp1,p2 plus p1 Kβ1,p2.

Finally, we partition each Kp1p2 into p2(p2−1)
2 Kp1,p1 plus p2 Kp1 , and each Kr

into α1(α1−1)
2 Kp1,p1 plus α1 Kp1,β1 and α1 Kp1 and 1 Kβ1 .

Proposition 4.4. Let C = p1p2 + p′, and N = qp1p2 + r, 0 ≤ r < p1p2, Construc-
tion 4.4 is valid and provides a ρmax(C)(p1+p2)

p1p2
+ O( 1

N )-approximation of the total
number of ADMs.

Proof. As β1 < p1 < p2, all the subgraphs of the decomposition, i.e. Kp1,p2, Kβ1,p2,
Kp1,p1, Kp1, Kp1,β1, Kβ1, have at most p1p2 ≤ C edges, and so the construction is
valid.

The total number of ADMs is q(q−1)
2 p1p2(p1 + p2) + q(α1p1(p1 + p2) + p1(β1 +

p2)) + qp1p
2
2 + α1(α1 − 1)p1 + α1(2p1 + β1) + β1. Using N = qp1p2 + r we get

N(N−1)(p1+p2)
2p1p2

+ O(N) ADMs and so the approximation factor.
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Remark : We can also modify the construction like we did before to include the
edges of the Kp1p2 or Kr in the bipartite subgraphs, and therefore get rid in many
cases of the O

(
1
N

)
in the approximation factor.

Note that when p1 = p2, Construction 4.4 is exactly Construction 4.1. However,
we have more possible choices for p1, p2, and p′, and so for many values Construc-
tion 4.4 is better than Construction 4.1. Of course we have interest to choose p′ as
small as possible, but also to choose p1 and p2 in order to minimize p1+p2

p1p2
; that can

be achieved by choosing p1 and p2 near to each other but not necessarily equals.
For example, let C = 32. We can write 32 = 5 × 5 + 7, or 32 = 4 × 8, or

32 = 5× 6+ 2. For C = 5× 5+ 7, Construction 4.4 or 4.1 give approximation factor
2
5ρmax(C); if we choose 32 = 4×8 in Construction 4.4 we get an approximation factor
12
32ρmax(C) which is better since 12

32 < 2
5 . But we can do better using 32 = 5 × 6 + 2

in Construction 4.4 getting approximation factor 11
30ρmax(C).

Let now C = 8 = 2× 4, ρmax(C) = 8
5 . With Construction 4.4 we get approxima-

tion factor is 8
5

6
8 = 1.2 to be compared with 8

5 = 1.6 from Construction 4.1. Similarly,
when C = 15 = 3×5, ρmax(C) = 5

2 and Construction 4.4 gives approximation factor
5
2 × 8

15 = 4
3 to be compared with 5

3 from Construction 4.1.

5. Construction with Multipartite Graphs

In the previous section we have shown that using a partition of KN into small
bipartite graphs, it is possible to obtain a 2ρmax(C)

�√C� + O
(

1
N

)
-approximation of the

total number of ADMs. We will now show that using small multipartite graphs it is
possible to drastically improve the approximation factor.

5.1. Construction with tripartite graphs

We will first use the optimal decomposition of KN obtained in 3 for a grooming factor
C = 3, and reported here in Theorem 5.1, to obtain a ρmax(C)⌊√

C
3

⌋ +O
(

1
N

)
-approximation

algorithm.

Theorem 5.1 (Theorem 4 of 3) Let n ≥ 2. There exists a partition of Kn using

• if n ≡ 1, 3 mod 6, n(n−1)
6 K3

• if n ≡ 5 mod 6, n(n−1)−8
6 K3 and 2 P3

• if n ≡ 0, 4 mod 12, n(n−1)
6 − n

4 K3 and n
4 K1,3

• if n ≡ 2 mod 6, n(n−1)−2
6 − ⌈

n−2
4

⌉
K3,

⌈
n−2

4

⌉
K1,3 and 1 edge

• if n ≡ 6, 10 mod 12, n(n−1)
6 − n+2

4 K3, n−2
4 K1,3 and 1 P4

where P3 is a path with 3 vertices, P4 a path with 4 vertices and K1,3 a complete
bipartite graph between a set of size 1 and a set of size 3 (also call a claw or a
3-star).
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Construction 5.1. Let C = 3p2 + p′, 0 ≤ p′ < 6p + 3 and N = qp + r, 1 ≤ r ≤ p,
and let the vertices of KN be ∪q

i=1Vi ∪ Vq+1, with |Vi| = p and |Vq+1| = r.
Consider Kq+1; replace each node i of Kq+1 by the set of nodes Vi, 1 ≤ i ≤ q +1,

and each edge {i, j} by the corresponding Kp,p or Kp,r constructed on Vi ∪ Vj.
Now consider the partition of Kq+1 given by Theorem 5.1. To each subgraph of the
partition we associate in KN a multipartite subgraph of KN ; for example to a K3

(i, j, k) will correspond a tripartite Kp,p,p built on Vi ∪ Vj ∪ Vk. All these subgraphs
plus the q Kp built on Vi, 1 ≤ i ≤ q and the Kr built on Vq+1 form a partition of
KN .

Proposition 5.1. Construction 5.1 is valid and provides a ρmax(C)⌊√
C
3

⌋ + O
(

1
N

)
-

approximation of the total number of ADMs.

Proof. All the subgraphs of the partition of Kq+1 contains at most 3 edges and so
the corresponding subgraphs in KN have at most 3p2 ≤ C edges. The Kp and Kr

have at most p(p−1)
2 < C edges. So Construction 5.1 is valid.

We can count exactly the number of ADMs.

• When q + 1 ≡ 1, 3 mod 6, each node of Kq+1 appears in q
2 K3. So each node

of KN appears in q
2 + 1 subgraphs (the +1 coming from the Kp or Kr to

which it belongs) and so we have q+2
2 N ADMs.

• When q + 1 ≡ 5 mod 6 and according to the proof of Theorem 5.1 of 3, the
two P3 of the partition of Kq+1 contain the edges x−u, u−y and x−v, v−y.
Nodes different from x and y appear in q

2 subgraphs of the partition and node
x and y in q

2 + 1 subgraphs. As nodes x and y are replaced by at most p

vertices, all nodes of KN appear in q
2 subgraphs except at most 2p of them

which appear in one more. So altogether we have at most q+2
2 N +2p ADMs.

• When q + 1 ≡ 0, 4 mod 12, q+1
4 nodes of Kq+1 appears in q−3

2 K3 and one
K1,3 (namely the central vertices of the K1,3) and 3(q+1)

4 appear in q−1
2 K3

and one K1,3. As the nodes are replaced by at most p vertices, each node of
KN appear in q+1

2 subgraphs and at most 3p(q+1)
4 in one more subgraph. So

altogether we have q+1
2 N + p3p(q+1)

4 ADMs.
• When q+1 ≡ 2 mod 6, a similar analysis gives that we have at most q+1

2 N +

3p
⌈

q−1
4

⌉
+ 2p ADMs.

• When q + 1 ≡ 6, 10 mod 12, we have at most q+1
2 N + 3p q−1

4 + 2p ADMs.

In all the cases the total number of ADMs is N(N−1)
2p + O (N) giving the propo-

sition as p =
⌊√

C
3

⌋
.

Note that we can in some cases get rid of the O( 1
N ) like we did in Construc-

tions 4.2 or 4.3 and in particular if C = 3p2 + p′, 0 < p′ < 6p + 3 for all values of N

large enough.
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5.2. Alternative constructions with tripartite graphs

We could have also used instead of the partition of Kq+1 of Theorem 5.1, a covering of
the edges of Kq+1 with K3’s. Indeed it is known that the edges of Kn can be covered
by

⌈
n
3

⌈
n−1

2

⌉⌉
K3’s (see 11 chapter VI.11). So we obtain the following construction.

Construction 5.2. Let C = 3p2 + p′, 0 ≤ p′ < 6p + 3 and N = qp + r, 1 ≤ r ≤ p,
and let the vertices of KN be ∪q

i=1Vi ∪ Vq+1, with |Vi| = p and |Vq+1| = r.
Replace each vertex of Kq+1 by the set of nodes Vi, 1 ≤ i ≤ q + 1 and each edge

by the corresponding Kp,p or Kp,r. From a covering of the edges of Kq+1 with K3’s
we obtain a covering of the edges of KN with Kp,p,p or Kp,p,r plus the Kp on the Vi,
1 ≤ i ≤ q, and the Kr on Vq+1.

Proposition 5.2. Construction 5.2 is valid and gives a ρmax(C)⌊√
C
3

⌋ + O( 1
N )-

approximation of the number of ADMs.

Proof. The subgraphs in the covering have at most 3p2 edges and so the construc-
tion is valid. Each node of KN belongs to at most

⌈ q
2

⌉
+ 1 subgraphs and so the

partition of KN uses N(N−1)
2p + O(N) ADMs.

In some cases we can also use other partitions based on partitions in tripartite
graphs.

Construction 5.3.
Let C = 3p2 and N = 3ap, a ≥ 1.
From the existence of 3-GDD of type u3 (see 11 chapter IV.4), that is a partition

of the tripartite graph Ku,u,u into K3, u ≥ 1, we know that Kup,up,up can be partition
into u2 Kp,p,p. Thus, we partition the edges of KN as follows

(1) If N = 3p (i.e. a = 1), partition K3p into one Kp,p,p and 3 Kp.
(2) Otherwise

(a) Partition the edges of KN into 3 K3a−1p and one K3a−1p,3a−1p,3a−1p

(b) Partition K3a−1p,3a−1p,3a−1p into (3a−1)2 Kp,p,p

(c) Repeat the process on each K3a−1p

One can check that we have partitioned KN into
∑a−1

i=0 3i(3a−i−1)2 = 3a(3a−1)
6 =

N(N−p)
6p2 Kp,p,p and 3a = N

p Kp.

Proposition 5.3. Construction 5.3 uses N(N+p)
2p ADMs and provide a ρmax(C)√

C
3

+

O
(

1
N

)
-approximation of the total number of ADMs.

Proof. Construction 5.3 uses 3pN(N−p)
6p2 + pN

p = N(N+p)
2p ADMs. Thus it has ap-

proximation factor γ(C,N) = N(N+p)
p

ρmax(C)
N(N−1) = ρmax(C)√

C
3

(
1 + p+1

N−1

)
.
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Remark that Construction 5.3 gives the same approximation ratio than Con-
struction 5.1, but it can be better for some particular values of C and N . For
example, when C = 12 and N = 18 Construction 5.3 uses 90 ADMs, while Con-
struction 5.1 uses 106 ADMs.

5.3. Construction with multipartite graphs

Finally, we can use partitions with 4 partite (resp. 5 partite) graphs using partitions
or coverings of Kq+1 with K4 (resp. K5). For example it is known that the edges

of Kq+1 can be covered with
⌈

q+1
4

⌈ q
3

⌉⌉
K4’s for q + 1 > 19 or

⌈
q+1
5

⌈ q
4

⌉⌉
K5’s for

q + 1 > 429 (see 11 chapter VI.11.4). Replacing each vertex i of Kq+1 by the set Vi

and the edges by the corresponding Kp,p or Kp,r, we get respectively a covering of the
edges of KN with 4-partite subgraphs Kp,p,p,p or Kp,p,p,r (or 5-partite subgraphs).
We obtain respectively a total number of N(N−1)

3p +O(N) ADMs, or N(N−1)
4p +O(N)

ADMs. We summarize the results in the next proposition.

Proposition 5.4. Let C = 6p2 + p′, 0 ≤ p′ < 12p + 6, and N = qp + r, 1 ≤ r ≤ p.
We have a ρmax(C)⌊√

3C
8

⌋ + O( 1
N ) approximation.

Let C = 10p2 + p′, 0 ≤ p′ < 20p + 10, and N = qp + r, 1 ≤ r ≤ p. We have a
ρmax(C)⌊√

2C
5

⌋ + O( 1
N ) approximation.

Using ρmax(C) ≤
√

C
2 , we have a

√
4
3 +O

(
1
N

)
-approximation or a

√
5
4 +O

(
1
N

)
-

approximation.
We can also give a construction analogous to Construction 5.1 using the optimal

construction for a grooming factor C = 6 presented in 4. The results are a little
better but give the same order of approximation.

We can also generalize Construction 5.3 when C = 6p2 and N = 4ap, using a

partition of Kup,up,up,up into u2 Kp,p,p,p. We will obtain a
√

4
3+O

(
1
N

)
-approximation.

Similarly, when C = 10p2 and N = 5ap we will obtain a
√

5
4 +O

(
1
N

)
-approximation,

and more generally, when C = α(α−1)
2 p2 and N = αap we will obtain a

√
α

α−1 +

O
(

1
N

)
-approximation. Unfortunately, such constructions apply only for a few values

of N . Also, the constructions that we have presented in Section 4 and 5.1 or 5.2 are
more interesting in practice.

6. Comparison between Constructions

We have presented various constructions, but none of them is always better than
the others. According to the values of C and N , one has to choose the most efficient
construction. To illustrate that, we have written a program that computes for any
C and N the values of all constructions, and we have reported some results in
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Fig. 1. Approximation ratio for given C (a, b, c) or given N (d).

Figure 1. The results of the program show that for small values of C and N there
is no absolute winner. For given C and large value of N , Figure 1 confirms the
asymptotic results of Table 1. For example, when C = 16, Figure 1(b) shows that
all the constructions are equivalent with a slight advantage for Construction 4.2.
However, we know from Theorem 3.1 that starting from N = 802, Construction 3.1
will always be better. For C = 12, 32, Construction 5.1 is the best (except for spare
values where Constructions 3.1 and 5.3 apply). For given N , Figure 1(d) shows again
that there is no absolute winner and the importance of divisibility condition on C

like C near to p2 (see the isolated point of Construction 4.2 for C = 64) or 3p2 or
6p2.

7. Conclusion

In this paper, using tools of design theory, we have given different constructions
with a small approximation factor for all-to-all traffic grooming in unidirectional



January 5, 2009 16:35 WSPC/INSTRUCTION FILE join-final-ws

Approximations for All-to-all Uniform Traffic Grooming on Unidirectional Ring 485

ring. These simple constructions might also be used to compute good solutions for
very dense set of requests, i.e. instances that are almost all-to-all, for which only
O(log C)-approximation algorithms are known so far. The traffic grooming problem
being APX-Hard 1, this work represents an important step toward the conception
of tight approximation algorithms for practical instances.
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