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1 Introduction

A graph embedded on a surface is called a map on this surface if all its faces are home-
omorphic to open disks. A map is a triangulation if all its faces have length three. A
closed curve on a surface is contractible if it can be continuously transformed into
a single point. Given a graph embedded on a surface, a contractible loop is an edge
forming a contractible curve. Two edges of an embedded graph are called homotopic
multiple edges if they have the same extremities and their union encloses a region
homeomorphic to an open disk. In this paper, we restrict ourself to graphs embedded
on surfaces that do not have contractible loops nor homotopic multiple edges. Note
that this is a weaker assumption, than the graph being simple, i.e. not having loops nor
multiple edges. In this paper we distinguish cycles from closed walk as cycles have
no repeated vertices. A triangle of a map is a closed walk of length three enclosing a
region that is homeomorphic to an open disk. This region is called the interior of the
triangle. Note that a triangle is not necessarily a face of the map as its interior may be
not empty. Note also that a triangle is not necessarily a cycle since non-contractible
loops are allowed. We denote by n the number of vertices, m the number of edges and
f the number of faces of a given map.

Poulalhon and Schaeffer introduced in [20] a method (called here PS method for
short) to linearly encode a planar triangulation with a binary word of length log2

(4n
n

) ∼
n log2

( 256
27

) ≈ 3.2451 n bits. This is asymptotically optimal since it matches the infor-
mation theory lower bound. The method is the following. Given a planar triangulation
G, it considers the minimal Schnyder wood of G (that is the orientation where all
inner vertices have outdegree 3 and that contains no cycle oriented clockwise). Then
a special depth-first search algorithm is applied by “following” ingoing edges and
“cutting” outgoing ones. The algorithm outputs a rooted spanning tree with exactly
two leaves (also called stems) on each vertex from which the original triangulation
can be recovered in a straightforward way. This tree can be encoded very efficiently. A
nice aspect of this work, besides its interesting encoding properties, is that the method
gives a bijection between planar triangulations and a particular type of plane trees.

Aleardi et al. [3] adapt PS method to encode planar triangulations with boundaries.
A consequence is that a triangulation of any oriented surface can be encoded by
cutting the surface along non-contractible cycles and see the surface as a planar map
with boundaries. This method is a first attempt to generalize PS algorithm to higher
genus. The obtained algorithm is asymptotically optimal (in terms of number of bits)
but it is not linear, nor bijective.

The goal of this paper is to present a new generalization of PS algorithm to higher
genus based on some strong structural properties. Applied on a well chosen orientation
of a toroidal triangulation, what remains after the execution of the algorithm is a
unicellular map, i.e. a map with only one face (which corresponds to the natural
generalization of trees when going to higher genus, see [7,8]), that can be encoded
optimally using 3.2451 n bits. Moreover, the algorithm can be performed in linear
time and leads to a new bijection between toroidal triangulations and a particular type
of unicellular maps.
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The two main ingredients that make PS algorithm work in an orientation of a planar
map are minimality and accessibility of the orientation. Minimality means that there is
no clockwise cycle. Accessibility means that there exists a root vertex such that all the
vertices have an oriented path directed toward the root vertex. Given α : V → N, an
orientation ofG is an α-orientation if for every vertex v ∈ V its outdegree d+(v) equals
α(v). The existence and uniqueness of minimal orientations in the plane is given by the
following result of Felsner [12] (related to older results of Propp [21] and de Mendez
[10]): the set of α-orientations of a given planar map carries a structure of distributive
lattice. This gives the existence and uniqueness of a minimal α-orientation as soon
as an α-orientation exists. Felsner’s result enables several analogues of PS method
to other kind of planar maps, see [2,4,11]. In all these cases the accessibility of the
considered α-orientations is a consequence of the natural choice of α, like in Poulalhon
and Schaeffer’s original work [20] where any orientation of the inner edges of a planar
triangulation with inner vertices having outdegree 3 is accessible for any choice of
root vertex on the outer face. (Note that the conventions may differs in the literature:
the role of outgoing and incoming edges are sometimes exchanged and/or the role of
clockwise and counterclockwise.)

For higher genus, the minimality can be obtained by the following generalization of
Felsner’s result. The second author, Knauer and the third author [16] showed that on
any oriented surface the set of orientations of a given map having the same homology
carries a structure of distributive lattice. Note that α has been removed here since it
is captured by the homology (see Sect. 2 for a brief introduction to homology). Note
also that this result is equivalent to an older result of Propp [21] where the lattice
structure is described in the dual setting. Since this result is very general, there is hope
to be able to further generalize PS method to other oriented surfaces. Note that a given
map on an oriented surface can have several α-orientations (for the same given α) that
are not homologous. So the set of α-orientations of a given map is now partitioned
into distributive lattices contrarily to the planar case where there is only one lattice
(and thus only one minimal element). In the case of toroidal triangulations we manage
to face this problem and maintain a bijection by recent results on the structure of
3-orientations of toroidal triangulations (i.e. α-orientation such that α(v) = 3 for all
vertices v). We identify a special lattice (and thus a special minimal orientation) using
the notion of Schnyder woods generalized to the torus by the second and third author
in [15] (further generalized in [16], see also [18] for a unified presentation).

The main issue while trying to extend PS algorithm to higher genus is the accessibil-
ity. Accessibility toward the outer face is given almost for free in the planar case because
of Euler’s formula that sums to a strictly positive value. For an oriented surface of genus
g ≥ 1 new difficulties occur. Already in genus 1 (the torus), even if the orientation is
minimal and accessible PS algorithm can visit all the vertices but not all the angles of
the map because of the existence of non-contractible cycles. We can show that the spe-
cial minimal orientation that we choose has the nice property that this problem never
occurs. In genus g ≥ 2 things get even more difficult with separating non-contractible
cycles that make having accessibility of the vertices already difficult to obtain.

Another problem is to recover the original map after the execution of the algorithm.
If what remains after the execution of PS method is a spanning unicellular map then
the map can be recovered with the same simple rules as in the plane. Unfortunately for
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many minimal orientations the algorithm leads to a spanning unicellular embedded
graph that is not a map (the only face is not a disk) and it is not possible to directly
recover the original map. Here again, the choice of our special orientation ensures that
this never happens.

Finally the method presented here can be implemented in linear time. Clearly the
execution of PS algorithm is linear but the difficulty lies in providing the algorithm
with the appropriate orientation in input. Computing the minimal Schnyder wood of
a planar triangulation can be done in linear time quite easily by using a so-called
shelling order (or canonical order, see [17]). Other similar ad-hoc linear algorithms
can sometimes be found for other kinds of α-orientations of planar maps (see for
example [13, Chap. 3]). Such methods are not known in higher genus. We solve this
problems by first computing an orientation in our special lattice and then go down in
the lattice to find the minimal orientation. All this can be performed in linear time.

A brief introduction to homology and to the corresponding terminology used in
the paper is given in Sect. 2. In Sect. 3, we present the definitions and results we
need concerning the generalization of Schnyder woods to the toroidal case. In Sect. 4,
we introduce a reformulation of Poulalhon and Schaeffer’s original algorithm that is
applicable to any orientation of any map on an oriented surface. The main theorem
of this paper is proved in Sect. 5, that is, for a toroidal triangulation given with an
appropriate root and orientation, the output of the algorithm is a toroidal spanning
unicellular map. In Sect. 6, we show how one can recover the original triangulation
from the output. This output is then used in Sect. 7 to optimally encode a toroidal tri-
angulation. The linear time complexity of the method is discussed in Sect. 8. In Sect. 9
(resp. Sect. 11), we exhibit a bijection between appropriately rooted toroidal triangula-
tions and rooted (resp. non-rooted) toroidal unicellular maps. To obtain the non-rooted
bijection, further structural results concerning the particular Schnyder woods consid-
ered in this paper are given in Sect. 10. Finally, a possible generalization to higher
genus is discussed in Sect. 12.

2 A Bit of Homology

We need a bit of surface homology of general maps, which we discuss now. The
presentation is not standard but it is short and sufficient to fit our needs. For a deeper
introduction to homology we refer to [14].

Consider a map G with edge set E , on an orientable surface of genus g, given with
an arbitrary orientation of its edges. This fixed arbitrary orientation is implicit and is
used to manipulate flows. A flow φ on G is a vector in Z

E . For any e ∈ E , we denote
by φe the coordinate e of φ.

A walk W of G is a sequence of edges with a direction of traversal such that the
ending point of an edge is the starting point of the next edge. A walk is closed if the
start and end vertices coincide. A walk has a characteristic flow φ(W ) defined by

φ(W )e := times W traverses e forward − times W traverses e backward.

This definition naturally extends to sets of walks. From now on we consider that a
set of walks and its characteristic flow are the same object. We do similarly for oriented
subgraphs as they can be seen as sets of walks.
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A facial walk is a closed walk bounding a face. LetF be the set of counterclockwise
facial walks and let F = 〈φ(F)〉 the subgroup of ZE generated by F . Two flows φ, φ′
are said to be homologous if φ−φ′ ∈ F. A flow φ is 0-homologous if it is homologous
to the zero flow, i.e. φ ∈ F.

Let W be the set of closed walks and let W = 〈φ(W)〉 the subgroup of Z
E

generated by W . The group H(G) = W/F is the first homology group of G. Since
dim(W) = m−n+1 and dim(F) = f −1, Euler’s Formula gives dim(H(G)) = 2g.
So H(G) ∼= Z

2g only depends on the genus of the map. A set (B1, . . . , B2g) of (closed)
walks of G is said to be a basis for the homology if (φ(B1), . . . , φ(B2g)) is a basis of
H(G).

3 Toroidal Schnyder Woods

Schnyder [22] introduced Schnyder woods for planar triangulations using the follow-
ing local property:

Given a map G, a vertex v and an orientation and coloring of the edges incident to
v with the colors 0, 1, 2, we say that a vertex v satisfies the Schnyder property if (see
Fig. 1):

• Vertex v has out-degree one in each color.
• The edges e0(v), e1(v), e2(v) leaving v in colors 0, 1, 2, respectively, occur in

counterclockwise order.
• Each edge entering v in color i enters v in the counterclockwise sector from ei+1(v)

to ei−1(v) (where i + 1 and i − 1 are understood modulo 3).

Given a planar triangulation G, a (planar) Schnyder wood of G is an orientation
and coloring of the inner edges of G with the colors 0, 1, 2, where each inner vertex v

satisfies the Schnyder property. In [15,16] (see also the HDR thesis of the third author
[18]) a generalization of Schnyder woods for higher genus has been proposed. Since
this paper deals with triangulations of the torus only, we use a simplified version of
the definitions and results from [15,16,18]).

The definition of Schnyder woods for toroidal triangulations is the following. Given
a toroidal triangulation G, a (toroidal ) Schnyder wood of G is an orientation and col-
oring of the edges of G with the colors 0, 1, 2, where each vertex satisfies the Schnyder
property (see Fig. 2 for an example). The three colors 0, 1, 2 are completely symmet-
ric in the definition, thus we consider that two Schnyder woods that are obtained one

Fig. 1 The Schnyder property.
The correspondence between
red, blue, green and 0, 1, 2 and
the arrow shapes used here
serves as a convention for all
figures in the paper
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0
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Fig. 2 A Schnyder wood of a
toroidal triangulation (opposite
sides are identified in order to
form a torus)

Fig. 3 Two different
orientations of a toroidal
triangulation. Only the one on
the right corresponds to a
Schnyder wood

from the other by a (cyclic) permutation of the colors are in fact the same object. We
consider that a Schnyder wood and its underlying orientation are the same object since
one can easily recover a coloring of the edges in a greedy way (by choosing the color
of an edge arbitrarily and then satisfying the Schnyder property at every vertex).

Note that the situation is quite different from the planar case. In a Schnyder wood
of a toroidal triangulation, each vertex has exactly one outgoing arc in each color, so
there are monochromatic cycles contrarily to the planar case (one can show that these
monochromatic cycles are non-contractible). Moreover the graph induced by one color
is not necessarily connected. Also, by a result of de Fraysseix and de Mendez [9], there
is a bijection between orientations of the internal edges of a planar triangulation where
every inner vertex has outdegree 3 and Schnyder woods. Thus, in the planar case, any
orientation with the proper outdegrees corresponds to a Schnyder wood. This is not
true for toroidal triangulations since there exists 3-orientations that do not correspond
to a Schnyder wood (see Fig. 3).

A Schnyder wood of a toroidal triangulation is said to be crossing, if for each pair
i, j of different colors, there exists a monochromatic cycle of color i intersecting a
monochromatic cycle of color j . The existence of crossing Schnyder woods is proved
in [15, Thm. 1] (note that in [15] the crossing property is included in the definition of
Schnyder woods, see [18] for a unified presentation):

Theorem 1 [15] A toroidal triangulation admits a crossing Schnyder wood.

Figure 4 depicts two different Schnyder woods of the same graph where just the
one on the left is crossing (on the right case the red and green monochromatic cycles
do not intersect, we say that the Schnyder wood is “half-crossing” since blue crosses
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Half-crossingCrossing

Fig. 4 A crossing and an half-crossing Schnyder wood

Non-crossing and HTC CTHtoN

Fig. 5 Non-crossing Schnyder woods

both green and red, see [16,18] for a formal definition). Note that the Schnyder wood
on the right is obtained from the one on the left by flipping a clockwise triangle into
a counterclockwise triangle.

Consider a toroidal triangulation G given with a crossing Schnyder wood. Let D0
be the corresponding 3-orientation of G. Let O(G) be the set of all the orientations of
G that are homologous to D0. A consequence of [16] is that all the crossing Schnyder
woods of G are homologous to each other. So O(G) contains all the crossing Schnyder
woods ofG. Thus the definition of O(G) does not depend on the particular choice of D0
and thus it is uniquely defined. Another consequence of [16] is that every orientation
of O(G) corresponds to a Schnyder wood. Thus we call the elements of O(G) the
homologous-to-crossing Schnyder woods (or HTC Schnyder woods for short). Note
that all the crossing Schnyder woods are HTC.

Figure 5 gives an example of an HTC Schnyder wood that is not crossing and
a Schnyder woods that is not HTC. The example on the left is obtained from the
crossing Schnyder wood of Fig. 4 by flipping two triangles (one to obtain the half-
crossing Schnyder wood of Fig. 4 and then another one flipped from counterclockwise
to clockwise). Thus it is HTC since the difference with a crossing Schnyder wood is a
0-homologous oriented subgraph. The example on the right of Fig. 5 is obtained from
the crossing Schnyder wood of Fig. 4 by reversing the three vertical red monochromatic
cycles. The union of these three cycles is not a 0-homologous oriented subgraph, thus
the resulting orientation is not HTC.

Let us now define briefly what a lattice is. Consider a partial order ≤ on a set S.
Given two elements x, y of S, let m(x, y) (resp. M(x, y)) be the set of elements z of
S such that z ≤ x and z ≤ y (resp. z ≥ x and z ≥ y). If m(x, y) (resp. M(x, y)) is
not empty and admits a unique maximal (resp. minimal) element, we say that x and y
admit a meet (resp. a join), noted x ∨ y (resp. x ∧ y). Then (S,≤) is a lattice if any
pair of elements of S admits a meet and a join. Thus in particular a lattice has a unique
minimal (resp. maximal) element. A lattice is distributive if the two operators ∨ and
∧ are distributive on each other.
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It is proved in [16] that on any oriented surface the set of orientations of a given map
having the same homology carries a structure of distributive lattice for a particular order
defined below. Thus in particular the set of HTC Schnyder woods carries a structure
of distributive lattice.

Let us define an order on the orientations of G. For that purpose, choose an arbitrary
face f0 of G and let F0 be its counterclockwise facial walk (this choice of a particular
face corresponds to the choice of the outer face in the planar case). Let F be the set
of counterclockwise facial walks of G and F ′ = F \ F0. We say that a 0-homologous
oriented subgraph T of G is counterclockwise (resp. clockwise) w.r.t. f0, if its charac-
teristic flow can be written as a combination with positive (resp. negative) coefficients
of characteristic flows of F ′, i.e. φ(T ) = ∑

F∈F ′ λFφ(F), with λ ∈ N
|F ′| (resp.

−λ ∈ N
|F ′|). Given two orientations D and D′ of G, let D \ D′ denote the subgraph

of D induced by the edges that are not oriented as in D′. We set D ≤ f0 D′ if and only
if D \ D′ is counterclockwise. In [16, Thm. 7] the following is proved:

Theorem 2 [16] (O(G),≤ f0) is a distributive lattice.

Since (O(G),≤ f0) is a distributive lattice, it has a unique minimal element. The
following lemma gives a property of this minimum that is essential to apply Poulalhon
and Schaeffer’s method.

Lemma 1 The minimal element of (O(G),≤ f0) is the only HTC Schnyder wood that
contains no clockwise (non-empty) 0-homologous oriented subgraph w.r.t. f0.

Proof Let Dmin be the minimal element of (O(G),≤ f0). Suppose by contradiction that
Dmin contains a clockwise non-empty 0-homologous oriented subgraph T w.r.t. f0.
The orientation of G obtained from Dmin by reversing all the edges of T gives an
orientation D ∈ O(G) such that T = Dmin \ D. Furthermore, by definition of ≤ f0 ,
we have D ≤ f0 Dmin, a contradiction to the minimality of Dmin. So Dmin contains no
clockwise non-empty 0-homologous oriented subgraph w.r.t. f0.

We now show that this characterizes Dmin. For any D ∈ O(G), distinct from Dmin,
we have Dmin ≤ f0 D. Thus T = D \ Dmin is a non-empty clockwise 0-homologous
oriented subgraph of D. 
�

The crossing Schnyder wood of Fig. 6 is the minimal HTC Schnyder wood for
the choice of f0 corresponding to the shaded face. This example is used in the next
sections to illustrate Poulalhon and Schaeffer’s method.

The two HTC Schnyder woods of Fig. 4 are not minimal (for any choice of spe-
cial face f0) since they contain several triangles that are oriented clockwise. On the
contrary, the HTC Schnyder wood of Fig. 5 is minimal w.r.t to its only face oriented
clockwise. These examples shows that the minimal HTC Schnyder wood is not always
crossing.

We define the dual orientation D∗ of an orientation D of G as an orientation of the
edges of the dual map G∗ of G satisfying the following rule: the dual e∗ of an edge e
goes from the face on the left of e to the face on the right of e. The following lemma
gives the key property of HTC Schnyder woods that we need in this paper:

Lemma 2 If D is an orientation corresponding to an HTC Schnyder wood, then the
dual orientation D∗ contains no oriented non-contractible cycle.
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Fig. 6 The minimal HTC
Schnyder wood of K7 w.r.t. the
shaded face

Proof We first prove the property for a crossing Schnyder wood and then show that it
is stable by reversing a 0-homologous oriented subgraph. Thus it is true for all HTC
Schnyder woods.

Consider a crossing Schnyder wood of G by Theorem 1 and let D0 be the corre-
sponding orientation. For i ∈ {0, 1, 2}, let Ci be a monochromatic cycle of color i .
In a crossing Schnyder wood, the monochromatic cycles are not contractible and any
two monochromatic cycles of different colors are not homologous and intersecting
[15]. Thus for any i ∈ {0, 1, 2}, the two cycles Ci−1 and Ci+1 generate the homology
of the torus with respect to Q. That is, for any curve C and i ∈ {0, 1, 2}, there exists
(k, ki−1, ki+1) ∈ Z

3, k �= 0, such that kC is homologous to ki−1Bi−1 + ki+1Bi+1. By
the Schnyder property, the cycle Ci−1 is crossing Ci (maybe several time) from left
to right so there exists α1, α2, α3 ∈ N, such that

∑
αiCi is 0-homologous. Thus for

any curve C there exists i ∈ {0, 1, 2}, (k, ki−1, ki+1) ∈ N
3, k �= 0, ki−1 �= 0, such

that kC is homologous to ki−1Bi−1 + ki+1Bi+1.
Suppose now by contradiction that D∗

0 contains an oriented non-contractible cycle
C∗. Let i ∈ {0, 1, 2}, (k, ki−1, ki+1) ∈ N

3, k �= 0, ki−1 �= 0, such that kC∗ is
homologous to ki−1Ci−1 + ki+1Ci+1. Then Ci+1 is crossing C∗ at least once from
left to right, contradicting the fact that C∗ is an oriented cycle of D∗

0 . So D∗
0 contains

no oriented non-contractible cycle.
Consider now a HTC Schnyder wood of G and let D be the corresponding orien-

tation. Since D and D0 are both element of O(G) they are homologous to each other.
Let T be the 0-homologous oriented subgraph of D such that T = D \ D0. Thus D0
is obtained from D by reversing the edges of T .

Suppose by contradiction that D∗ contains an oriented non-contractible cycle C∗.
The oriented subgraph T is 0-homologous thus it intersects C∗ exactly the same
number of time from right to left than from left to right. Since C∗ is oriented foward,
T cannot intersect it from left to right. So T does not intersectC∗ at all. Thus reversing
T to go from D to D0 does not affect C∗. Thus C∗ is an oriented non-contractible
cycle of D∗

0 , a contradiction. 
�
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Fig. 7 A Schnyder wood that is not HTC but contains no oriented non-contractible cycle in the dual

For the non-HTC Schnyder wood of Fig. 5, one can see that there is an horizontal
oriented non-contractible cycle in the dual, so it does not satisfy the conclusion of
Lemma 2. Note that this property is not a characterization of being HTC. Figure 7 is
a Schnyder wood that is not HTC but satisfies the conclusion of Lemma 2 (we leave
the reader check that this Schnyder wood is not HTC, it will be easier after Sect. 9 and
the definition of γ ).

4 Poulalhon and Schaeffer’s Algorithm on Oriented Surfaces

In this section we introduce a reformulation of Poulalhon and Schaeffer’s original
algorithm. This version is more general in order to be applicable to any orientation
of any map on an oriented surface. The execution slightly differs from the original
formulation, even on planar triangulations. In [20], the authors first delete some outer
edges of the triangulation before executing the algorithm. We do not consider some
edges to be special here since we want to apply the algorithm on any surface but the
core of the algorithm is the same. We show general properties of the algorithm in this
section before considering toroidal triangulations in the forthcoming sections.

Algorithm PS

Input : An oriented map G on an oriented surface S, a root vertex v0 and a root
edge e0 incident to v0.

Output : A graph U with stems, embedded on the oriented surface S.
The algorithm explores some of the edges of the map, marking one edge on each

iteration.

1. Let v := v0, e := e0, U := ∅, none of the edges is marked.
2. Let v′ be the extremity of e different from v.

Case 1 e is non-marked and entering v. Add e to U and let v := v′.
Case 2 e is non-marked and leaving v. Add a stem toU incident to v and correspond-

ing to e.
Case 3 e is already marked and entering v. Do nothing.
Case 4 e is already marked and leaving v. Let v := v′.

3. Mark e.
4. Let e be the next edge around v in counterclockwise order after the current e.
5. While (v, e) �= (v0, e0) go back to 2.
6. Return U .

We insist on the fact that the output of Algorithm PS is a graph embedded on the
same surface as the input map but that this embedded graph is not necessarily a map
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Fig. 8 The four cases of
Algorithm PS

non−marked non−marked

Case 1 Case 2

marked marked

Case 3 Case 4

(i.e some faces may not be homeomorphic to open disks). In the following section
we show that in our specific case the output U is a unicellular map on the contrary to
some examples presented later on (see Fig. 14).

Consider any oriented map G on an oriented surface given with a root vertex v0 and
a root edge e0 incident to v0. When Algorithm PS is considering a couple (v, e) we
see this like it is considering the angle at v that is just before e in counterclockwise
order. The particular choice of v0 and e0 is thus in fact a particular choice of a root
angle a0 that automatically defines a root vertex v0, a root edge e0, as well as a root
face f0. From now on we consider that the input of Algorithm PS is an oriented
map plus a root angle (without specifying the root vertex, face and edge).

The angle graph of G, is the graph defined on the angles of G and where two angles
are adjacent if and only if they are consecutive around a vertex or around a face. An
execution of Algorithm PS can be seen as a walk in the angle graph. Figure 8
illustrates the behavior of the algorithm corresponding to Case 1–4. In each case, the
algorithm is considering the angle in top left position and depending on the marking
of the edge and its orientation the next angle that is considered is the one that is the
end of the magenta arc of the angle graph. The cyan edge of Case 1 represents the
edge that is added to U by the algorithm. The stems of U added in Case 2 are not
represented in cyan, in fact we will represent them later by an edge in the dual. Indeed
seeing the execution of Algorithm PS as a walk in the angle graph enables us to
show that Algorithm PS behaves exactly the same in the primal or in the dual map
(as explained later).

In Fig. 9, we give an example of an execution of Algorithm PS on the orientation
corresponding to the minimal HTC Schnyder wood of K7 of Fig. 6.

Let a be a particular angle of the map G. It is adjacent to four other angles in the
angle graph (see Fig. 10). Let v, f be such that a is an angle of vertex v and face
f . The next-vertex (resp. previous-vertex) angle of a is the angle appearing just after
(resp. before) a in counterclockwise order around v. Similarly, the next-face (resp.
previous-face) angle of a is the angle appearing just after (resp. before) a in clockwise
order around f . These definitions enable one to orient consistently the edges of the
angle graph like in Fig. 10 so that for every oriented edge (a, a′), a′ is a next-vertex
or next-face angle of a.
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Fig. 9 An execution of Algorithm PS on K7 given with the orientation corresponding to the minimal
HTC Schnyder wood of Fig. 6. Vertices are numbered in black. The root angle is identified by a root symbol
and chosen in the face for which the orientation is minimal (i.e. the shaded face of Fig. 6). The magenta
arrows and numbers are here to help the reader to follow the cycle in the angle graph. The output U is a
toroidal unicellular map, represented here as an hexagon where the opposite sides are identified.

Fig. 10 Orientation of the
edges of the angle graph

The different cases depicted in Fig. 8 show that an execution of Algorithm PS is
just an oriented walk in the angle graph (i.e. a walk that is following the orientation of
the edges described in Fig. 10). The condition in the while loop ensures that when the
algorithm terminates, this walk is back to the root angle. The following proposition
shows that the algorithm actually terminates:

Proposition 1 Consider an oriented map G on an oriented surface and a root angle
a0. The execution ofAlgorithm PS on (G, a0) terminates and corresponds to a cycle
in the angle graph.

Proof We consider the oriented walk W in the angle graph corresponding to the
execution of Algorithm PS . Note that W may be infinite. The walk W starts with
a0, and if it is finite it ends with a0 and contains no other occurrence of a0 (otherwise
the algorithm should have stopped earlier). Toward a contradiction, suppose that W is
not simple (i.e. some angles different from the root angle a0 are repeated). Let a �= a0
be the first angle along W that is met for the second time. Let a1, a2 be the angles
appearing before the first and second occurrence of a in W , respectively. Note that
a1 �= a2 by the choice of a.

If a1 is the previous-vertex angle of a, then a2 is the previous-face angle of a. When
the algorithm considers a1, none of a and a2 are already visited, thus edge e is not
marked. Since the execution then goes to a after a1, we are in Case 2 and the edge e
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Fig. 11 The different cases of
Algorithm PS seen in a dual
way. The number of the angles
gives the order in which the
algorithm visits them (unvisited
angles are not numbered). The
edges of P and Q are
respectively cyan and yellow
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between a and a1 is oriented from v, where v is the vertex incident to a. Afterward,
when the algorithm reaches a2, Case 3 applies and the algorithm cannot go to a, a
contradiction. The case where a1 is the previous-face angle of a is similar.

So W is simple. Since the angle graph is finite, W is finite. So the algorithm
terminates, thus W ends on the root angle and W is a cycle. 
�

In the next section we see that in some particular cases the cycle in the angle graph
corresponding to the execution of PS algorithm (Proposition 1) can be shown to be
Hamiltonian like in Fig. 9.

By Proposition 1, an angle is considered at most once by Algorithm PS. This
implies that the angles around an edge can be visited in different ways depicted in
Fig. 11. Consider an execution of Algorithm PS on G. Let C be the cycle formed in
the angle graph by Proposition 1. Let P be the set of edges of the output U (without
the stems) and Q be the set of dual edges of edges of G corresponding to stems of U .
These edges are represented in Fig. 11 in cyan for P and in yellow for Q. They are
considered with their orientation (recall that the dual edge e∗ of an edge e goes from
the face on the left of e to the face on the right of e). Note that C does not cross an
edge of P or Q, and moreover P and Q do not intersect (i.e. an edge can be in P or
its dual in Q but both cases cannot happen).

One can remark that the cases of Fig. 11 are dual of each other. One can see that
Algorithm PS behaves exactly the same if applied on the primal map or on the dual
map. The only modifications to make is to start the algorithm with the face f0 as the
root vertex, the dual of edge e0 as the root edge and to replace counterclockwise by
clockwise at Line 4. Then the cycleC formed in the angle graph is exactly the same and
the output is Q with stems corresponding to P (instead of P with stems corresponding
to Q). Note that this duality is also illustrated by the fact that the minimality of the
orientation of G w.r.t. the root face is nothing else than the accessibility of the dual
orientation toward the root face. Indeed, a clockwise 0-homologous oriented subgraph
of G w.r.t f0 corresponds to a directed cut of the dual where all the edges are oriented
from the part containing f0. The following lemma shows the connectivity of P and Q:

Lemma 3 At each step of the algorithm, for every vertex v appearing in an edge of
P (resp. Q), there is an oriented path from v to v0 (resp. f0) consisting only of edges
of P (resp. Q). In particular P and Q are connected.
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Proof If at a step a new vertex is reached then it correspond to Case 1 and the cor-
responding edge is added in P and oriented from the new vertex, so the property is
satisfied by induction. As observed earlier the algorithm behaves similarly in the dual
map. 
�

Let C be the set of angles of G that are not in C . Any edge of G is bounded by
exactly 4 angles. Since C is a cycle, the 4 angles around an edge are either all in C ,
all in C or 2 in each set (see Fig. 11). Moreover, if they are 2 in each set, these sets are
separated by an edge of P or an edge of Q. Hence the frontier between C and C is a
set of edges of P and Q. Moreover this frontier is a union of oriented closed walks
of P and of oriented closed walks of Q. In the next section we study this frontier in
more details to show that C is empty in the case considered there.

5 From Toroidal Triangulations to Unicellular Maps

Let G be a toroidal triangulation. In order to choose appropriately the root angle a0,
we have to consider separating triangles. A separating triangle is a triangle that is
different from a face of G, that is a triangle whose interior in non empty. We say that
an angle is in the strict interior of a separating triangle T if it is in the interior of T
and not incident to a vertex of T . We choose as root angle a0 any angle that is not
in the strict interior of a separating triangle. One can easily see that such an angle a0
always exists. Indeed the interiors of two triangles are either disjoint or one is included
in the other. So, the angles that are incident to a triangle whose interior is maximal by
inclusion satisfy the property.

A subgraph of a graph is spanning if it is covering all the vertices. The main result
of this section is the following theorem (see Fig. 9 for an example):

Theorem 3 Consider a toroidal triangulation G, a root angle a0 that is not in the strict
interior of a separating triangle and the orientation of the edges of G corresponding
to the minimal HTC Schnyder wood w.r.t. the root face f0 containing a0. Then the
output U of Algorithm PS applied on (G, a0) is a toroidal spanning unicellular
map.

The choice of a root angle that is not in the interior of a separating triangle is
necessary to be able to use Poulalhon and Schaeffer method. Indeed, in a 3-orientation
of a toroidal triangulation, by Euler’s formula, all the edges that are incident to a
separating triangle and in its interior are oriented towards the triangle. Thus if one
applies Algorithm PS from an angle in the strict interior of a triangle, the algorithm
will remain stuck in the interior of the triangle and will not visit all the vertices.

Consider a toroidal triangulation G, a root angle a0 that is not in the strict interior
of a separating triangle and the orientation of the edges of G corresponding to the
minimal HTC Schnyder wood w.r.t. the root face f0 containing a0. Let U be the
output of Algorithm PS applied on (G, a0). We use the same notation as in the
previous section: the cycle in the angle graph is C , the set of angles that are not in C
is C , the set of edges of U is P , the dual edges of stems of U is Q.

Lemma 4 The frontier between C and C contains no oriented closed walk of Q.
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Proof Suppose by contradiction that there exists such a walk W . Then along this
walk, all the dual edges of W are edges of G oriented from the region containing C
toward C as one can see in Fig. 11. By Lemma 2, the walk W does not contain any
oriented non-contractible cycle. So W contains an oriented contractible cycle W ′, and
then either C is in the contractible region delimited by W ′, or not. The two case are
considered below:

• C lies in the non-contractible region of W ′

Then consider the plane map G ′ obtained from G by keeping only the vertices and
edges that lie (strictly) in the contractible region delimited by W ′. Let n′ be the
number of vertices of G ′. All the edges incident to G ′ that are not in G ′ are entering
G ′. So in G ′ all the vertices have outdegree 3 as we are considering 3-orientations
of G. Thus the number of edges of G ′ is exactly 3n′, contradicting the fact that
the maximal number of edges of planar map on n vertices is 3n − 6 by Euler’s
formula.

• C lies in the contractible region of W ′

All the dual edges of W ′ are edges ofG oriented from its contractible region toward
its exterior. Consider the graph Gout obtained from G by removing all the edges
that are cut by W ′ and all the vertices and edges that lie in the contractible region
of W ′. As G is a map, the face of Gout containing W ′ is homeomorphic to an open
disk. Let F be its facial walk (in Gout) and let k be the length of F . We consider
the map obtained from the facial walk F by putting back the vertices and edges
that lied inside. We transform this map into a plane map G ′ by duplicating the
vertices and edges appearing several times in F , in order to obtain a triangulation
of a cycle of length k. Let n′,m′, f ′ be the number of vertices, edges and faces of
G ′. Every inner vertex of G ′ has outdegree 3, there are no other inner edges, so the
total number of edges of G ′ is m′ = 3(n′ − k) + k. All the inner faces have length
3 and the outer face has length k, so 2m′ = 3( f ′ − 1) + k. By Euler’s formula
n′ − m′ + f ′ = 2. Combining the three equalities gives k = 3 and F is hence a
separating triangle of G. This contradicts the choice of the root angle, as it should
not lie in the strict interior of a separating triangle.


�
A Hamiltonian cycle of a graph is a cycle visiting every vertex once.

Lemma 5 The cycle C is a Hamiltonian cycle of the angle graph, all the edges of
G are marked exactly twice, the subgraph Q of G∗ is spanning, and, if n ≥ 2, the
subgraph P of G is spanning.

Proof Suppose for a contradiction that C is non empty. By Lemma 4 and Sect. 4,
the frontier T between C and C is a union of oriented closed walks of P . Hence a
face of G has either all its angles in C or all its angles in C . Moreover T is a non-
empty union of oriented closed walk of P that are oriented clockwise according to
the set of faces containing C (see the first case of Fig. 11). This set does not contain
f0 since a0 is in f0 and C . As in Sect. 3, let F be the set of counterclockwise facial
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walks of G and F0 be the counterclockwise facial walk of f0. Let F ′ = F \ F0,
and FC ⊆ F ′ be the set of counterclockwise facial walks of the faces containing C .
We have φ(T ) = −∑

F∈FC
φ(F). So T is a clockwise non-empty 0-homologous

oriented subgraph w.r.t. f0. This contradicts Lemma 1 and the minimality of the
orientation w.r.t. f0. So C is empty, thus C is Hamiltonian and all the edges of G are
marked twice.

Suppose for a contradiction that n ≥ 2 and P is not spanning. Since the algorithm
starts at v0, P is not covering a vertex v of G different from v0. Then the angles
around v cannot be visited since by Fig. 11 the only way to move from an angle of
one vertex to an angle of another vertex is through an edge of P incident to them. So
P is spanning. The proof is similar for Q (note that in this case we have f ≥ 2). 
�
Lemma 6 The first cycle created in P (resp. in Q) by the algorithm is oriented.

Proof Let e be the first edge creating a cycle in P while executing Algorithm PS
and consider the steps of Algorithm PS before e is added to P . So P is a tree during
all these steps. For every vertex of P we define P(v) the unique path from v to v0 in
P (while P is empty at the beginning of the execution, we define P(v0) = {v0}). By
Lemma 3, this path P(v) is an oriented path. We prove the following

Claim 1 Consider a step of the algorithm before e is added to P and where the
algorithm is considering a vertex v. Then all the angles around the vertices of P
different from the vertices of P(v) are already visited.

Proof Suppose by contradiction that there is such a step of the algorithm where some
angles around the vertices of P different from the vertices of P(v) have not been
visited. Consider the first such step. Then clearly we are not at the beginning of the
algorithm since P = P(v) = {v0}. So at the step just before, the conclusion holds
and now it does not hold anymore. Clearly at the step before we were considering a
vertex v′ distinct from v, otherwise P(v) and P have not changed and we have the
conclusion. So from v′ to v we are either in Case 1 or Case 4 of Algorithm PS
(see Fig. 12). If v has been considered by Case 1, then P(v) contains P(v′) and the
conclusion holds. If v has been considered by Case 4, then since P is a tree, all the
angles around v′ have been considered and v′ is the only element of P \ P(v) that is
not in P \ P(v′). Thus the conclusion also holds. 
�

Consider the iteration of Algorithm PS where e is added to P . The edge e is
added to P by Case 1, so e is oriented from a vertex u to a vertex v such that v is
already in P or v is the root vertex v0. Consider the step of the algorithm just before u
is added to P . By Claim 1, vertex u is not in P \ P(v) (otherwise e would have been
considered before and it would be a stem). So u ∈ P(v) and P(v) ∪ {e} induces an
oriented cycle of G. The proof is similar for Q. 
�
Lemma 7 P is a spanning unicellular map of G and Q is a spanning tree of G∗.
Moreover one is the dual of the complement of the other.

Proof Suppose that Q contains a cycle, then by Lemma 6 it contains an oriented
cycle of G∗. This cycle is contractible by Lemma 2. Recall that by Lemma 5, C is a
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Fig. 12 The two cases of the
proof of Claim 1

v’

v

v

v’

Case 1 Case 4

Hamiltonian cycle, moreover it does not cross Q, a contradiction. So Q contains no
cycle and is a tree.

By Lemma 5, all the edges of G are marked at the end. So every edge of G is either
in P or its dual in Q (and not both). Thus P and Q are the dual of the complement of
each other. So P is the dual of the complement of a spanning tree of G∗. Thus P is a
spanning unicellular map of G. 
�

Theorem 3 is then a direct reformulation of Lemma 7 by the definition of P and Q.
A toroidal unicellular map on n vertices has exactly n + 1 edges: n − 1 edges of a

tree plus 2 edges corresponding to the size of a basis of the homology (i.e. plus 2g in
general for an oriented surface of genus g). Thus a consequence of Theorem 3 is that
the obtained unicellular map U has exactly n vertices, n + 1 edges and 2n − 1 stems
since the total number of edges is 3n. The orientation of G induces an orientation
of U such that the stems are all outgoing, and such that while walking clockwise
around the unique face of U from a0, the first time an edge is met, it is oriented
counterclockwise according to this face, see Fig. 13 where all the tree-like parts and
stems are not represented. There are two types of toroidal unicellular maps depicted
in Fig. 13. Two cycles of U may intersect either on a single vertex (square case) or on
a path (hexagonal case). The square can be seen as a particular case of the hexagon
where one side has length zero and thus the two corners of the hexagon are identified.

In Fig. 14, we give several examples of executions of Algorithm PS on minimal
3-orientations. These examples show how important is the choice of the minimal HTC
Schnyder wood in order to obtain Theorem 3. In particular, the third example shows
that Algorithm PS can visit all the angles of the triangulation (i.e. the cycle in the
angle graph is Hamiltonian) without outputting a unicellular map.

Note that the orientations of Fig. 14 are not Schnyder woods. One may wonder if
the fact of being a Schnyder wood is of any help for our method. This is not the case
since there are examples of minimal Schnyder woods that are not HTC and where
Algorithm PS does not visit all the vertices. One can obtain such an example by
replicating 3 times horizontally and then 3 times vertically the second example of
Fig. 14 to form a 3 × 3 tiling and starts Algorithm PS from the same root angle.
Conversely, there are minimal Schnyder woods that are not HTC where Algorithm

123



Discrete Comput Geom

a

a

ba

b

b

a

a a

a

SquareHexagon

Fig. 13 The two types of rooted toroidal unicellular maps

Fig. 14 Examples of minimal
3-orientations that are not HTC
Schnyder woods and where
Algorithm PS respectively: 1
does not visit all the vertices, 2
visits all the vertices but not all
the angles, and 3 visits all the
angles but does not output an
unicellular map

(2)(1)

(3)

PS does output a toroidal spanning unicellular map (the Schnyder wood of Fig. 7 can
serve as an example while starting from an angle of the only face oriented clockwise).

6 Recovering the Original Triangulation

This section is dedicated to show how to recover the original triangulation from the
output of Algorithm PS. The method is very similar to [20] since like in the plane
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Fig. 15 Example of how to recover the original toroidal triangulation K7 from the output of Algorithm
PS

the output has only one face that is homeomorphic to an open disk (i.e. a tree in the
plane and a unicellular map in general).

Theorem 4 Consider a toroidal triangulation G, a root angle a0 that is not in the strict
interior of a separating triangle and the orientation of the edges of G corresponding to
the minimal HTC Schnyder wood w.r.t. the root face f0 containing a0. From the output
U ofAlgorithm PS applied on (G, a0) one can reattach all the stems to obtain G by
starting from the root angle a0 and walking along the face of U in counterclockwise
order (according to this face): each time a stem is met, it is reattached in order to
create a triangular face on its left side.

Theorem 4 is illustrated in Fig. 15 where one can check that the obtained toroidal
triangulation is K7 (like on the input of Fig. 9).

In fact in this section we define a method, more general than the one described in
Theorem 4, that will be useful in next sections.

Let Ur (n) denote the set of toroidal unicellular mapsU rooted on a particular angle,
with exactly n vertices, n+1 edges and 2n−1 stems satisfying the following property.
A vertex that is not the root, has exactly 2 stems if it is not a corner, 1 stem if it is
the corner of an hexagon and 0 stem if it is the corner of a square. The root vertex
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has 1 additional stem, i.e. it has 3 stems if it is not a corner, 2 stems if it is the corner
of an hexagon and 1 stem if it is the corner of a square. Note that the output U of
Algorithm PS given by Theorem 3 is an element of Ur (n).

Similarly to the planar case [20], we define a general way to reattach step by step all
the stems of an elementU ofUr (n). LetU0 = U , and, for 1 ≤ k ≤ 2n−1, letUk be the
map obtained fromUk−1 by reattaching one of its stem (we explicit below which stem
is reattached and how). The special face of U0 is its only face. For 1 ≤ k ≤ 2n − 1,
the special face of Uk is the face on the right of the stem of Uk−1 that is reattached
to obtain Uk . For 0 ≤ k ≤ 2n − 1, the border of the special face of Uk consists of a
sequence of edges and stems. We define an admissible triple as a sequence (e1, e2, s),
appearing in counterclockwise order along the border of the special face of Uk , such
that e1 = (u, v) and e2 = (v,w) are edges of Uk and s is a stem attached to w. The
closure of the admissible triple consists in attaching s to u, so that it creates an edge
(w, u) oriented from w to u and so that it creates a triangular face (u, v, w) on its left
side. The complete closure of U consists in closing a sequence of admissible triple,
i.e. for 1 ≤ k ≤ 2n − 1, the map Uk is obtained from Uk−1 by closing any admissible
triple.

Note that, for 0 ≤ k ≤ 2n − 1, the special face of Uk contains all the stems of Uk .
The closure of a stem reduces the number of edges on the border of the special face
and the number of stems by 1. At the beginning, the unicellular map U0 has n + 1
edges and 2n− 1 stems. So along the border of its special face, there are 2n+ 2 edges
and 2n − 1 stems. Thus there is exactly three more edges than stems on the border of
the special face ofU0 and this is preserved while closing stems. So at each step there is
necessarily at least one admissible triple and the sequenceUk is well defined. Since the
difference of three is preserved, the special face of U2n−2 is a quadrangle with exactly
one stem. So the reattachment of the last stem creates two faces that have length three
and at the end U2n−1 is a toroidal triangulation. Note that at a given step there might
be several admissible triples but their closure are independent and the order in which
they are performed does not modify the obtained triangulation U2n−1.

We now apply the closure method to our particular case. Consider a toroidal trian-
gulation G, a root angle a0 that is not in the strict interior of a separating triangle and
the orientation of the edges of G corresponding to the minimal HTC Schnyder wood
w.r.t. the root face f0. Let U be the output of Algorithm PS applied on (G, a0).

Lemma 8 When a stem of U is reattached to form the corresponding edge of G, it
splits the (only) face of U into two faces. The root angle of U is in the face that is on
the right side of the stem.

Proof By Lemma 5, the execution of Algorithm PS corresponds to a Hamiltonian
cycle C = (a0, . . . , a2m, a0) in the angle graph of G. Thus C defines a total order
< on the angles of G where ai < a j if and only if i < j . Let us consider now the
angles on the face of U . Note that such an angle corresponds to several angles of
G, that are consecutive in C and that are separated by a set of incoming edges of G
(those incoming edges corresponding to stems of U ). Thus the order on the angles of
G defines automatically an order on the angles of U . The angles of U considered in
clockwise order along the border of its face, starting from the root angle, correspond
to a sequence of strictly increasing angles for <.
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Consider a stem s of U that is reattached to form an edge e of G. Let as be the
angle of U that is situated just before s (in clockwise order along the border of the
face of U ) and a′

s be the angle of U where s should be reattached. If a′
s < as , then

when Algorithm PS consider the angle as , the edge corresponding to s is already
marked and we are not in Case 2 of Algorithm PS . So as < a′

s and a0 is on the
right side of s. 
�

Recall that U is an element of Ur (n) so we can apply on U the complete closure
procedure described above. We use the same notation as before, i.e. let U0 = U and
for 1 ≤ k ≤ 2n − 1, the map Uk is obtained from Uk−1 by closing any admissible
triple. The following lemma shows that the triangulation obtained by this method
is G:

Lemma 9 The complete closure of U is G, i.e. U2n−1 = G.

Proof We prove by induction on k that every face of Uk is a face of G, except for the
special face. This is true for k = 0 since U0 = U has only one face, the special face.
Let 0 ≤ k ≤ 2n − 2, and suppose by induction that every non-special face of Uk is a
face of G. Let (e1, e2, s) be the admissible triple of Uk such that its closure leads to
Uk+1, with e1 = (u, v) and e2 = (v,w). The closure of this triple leads to a triangular
face (u, v, w) of Uk+1. This face is the only “new” non-special face while going from
Uk to Uk+1.

Suppose, by contradiction, that this face (u, v, w) is not a face of G. Let av (resp.
aw) be the angle of Uk at the special face, between e1 and e2 (resp. e2 and s). Since G
is a triangulation, and (u, v, w) is not a face of G, there exists at least one stem of Uk

that should be attached to av or aw to form a proper edge of G. Let s′ be such a stem
that is the nearest from s. In G the edges corresponding so s and s′ should be incident
to the same triangular face. Let x be the origin of the stem s′. Let z ∈ {v,w} such
that s′ should be reattached to z. If z = v, then s should be reattached to x to form
a triangular face of G. If z = w, then s should be reattached to a common neighbor
of w and x located on the border of the special face of Uk in counterclockwise order
between w and x . So in both cases s should be reattached to a vertex y located on
the border of the special face of Uk in counterclockwise order between w and x (with
possibly y = x). To summarize s goes from w to y and s′ from x to z, and z, x, y, w
appear in clockwise order along the special face of Uk . By Lemma 8, the root angle is
on the right side of both s and s′, this is not possible since their right sides are disjoint,
a contradiction.

So for 0 ≤ k ≤ 2n − 2, all the non-special faces of Uk are faces of G. In particular
every face of U2n−1 except one is a face of G. Then clearly the (triangular) special
face of U2n−1 is also a face of G, hence U2n−1 = G. 
�

Lemma 9 shows that one can recover the original triangulation from U with any
sequence of admissible triples that are closed successively. This does not explain how
to find the admissible triples efficiently. In fact the root angle can be used to find a
particular admissible triple of Uk :

Lemma 10 For 0 ≤ k ≤ 2n − 2, let s be the first stem met while walking counter-
clockwise from a0 in the special face of Uk. Then before s, at least two edges are met
and the last two of these edges form an admissible triple with s.
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Proof Since s is the first stem met, there are only edges that are met before s. Suppose
by contradiction that there is only zero or one edge met before s. Then the reattachment
of s to form the corresponding edge of G is necessarily such that the root angle is on
the left side of s, a contradiction to Lemma 8. So at least two edges are met before s
and the last two of these edges form an admissible triple with s. 
�

Lemma 10 shows that one can reattach all the stems by walking once along the face
of U in counterclockwise order. Thus we obtain Theorem 4.

Note thatU is such that the complete closure procedure described here never wraps
over the root angle, i.e. when a stem is reattached, the root angle is always on its right
side (see Lemma 8). The property of never wrapping over the root angle is called
balanced in [2]. Let Ur,b(n) denote the set of elements of Ur (n) that are balanced. So
the output U of Algorithm PS given by Theorem 3 is an element of Ur,b(n). We
exhibit in Sect. 9 a bijection between appropriately rooted toroidal triangulations and
a particular subset of Ur,b(n).

The possibility to close admissible triples in any order to recover the original trian-
gulation is interesting compared to the simpler method of Theorem 4 since it enables
to recover the triangulation even if the root angle is not given. This property is used
in Sect. 11 to obtain a bijection between toroidal triangulations and some unrooted
unicellular maps.

Moreover if the root angle is not given, then one can simply start from any angle
of U , walk twice around the face of U in counterclockwise order and reattach all the
admissible triples that are encountered along this walk. Walking twice ensures that at
least one complete round is done from the root angle. Since only admissible triples
are considered, we are sure that no unwanted reattachment is done during the process
and that the final map is G. This enables to reconstruct G in linear time even if the
root angle is not known. This property is used in Sect. 7.

7 Optimal Encoding

The results presented in the previous sections allow us to generalize the encoding of
planar triangulations, defined by Poulalhon and Schaeffer [20], to triangulations of
the torus. The construction is direct and it is hence really different from the one of
[3] where triangulations of surfaces are cut in order to deal with planar triangulations
with boundaries. Here we encode the unicellular map outputted by Algorithm PS
by a plane rooted tree with n vertices and with exactly two stems attached to each
vertex, plus O(log(n)) bits. As in [3], this encoding is asymptotically optimal and uses
approximately 3.2451n bits. The advantage of our method is that it can be implemented
in linear time. Moreover we believe that our encoding gives a better understanding of
the structure of triangulations of the torus. It is illustrated with new bijections that are
obtained in Sects. 9 and 11 .

Consider a toroidal triangulationG, a root anglea0 that is not in the strict interior of a
separating triangle and the orientation of the edges of G corresponding to the minimal
HTC Schnyder wood w.r.t. the root face f0. Let U be the output of Algorithm
PS applied on (G, a0). As already mentioned at the end of Sect. 6, to retrieve the
triangulation G one just needs to know U without the information of its root angle
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Fig. 16 From unicellular maps to trees with special stems and back

(by walking twice around the face of U in counterclockwise order and reattaching all
the admissible triples that are encountered along this walk, one can recover G). Hence
to encode G, one just has to encode U without the position of the root angle around
the root vertex (see Fig. 16a).

By Lemma 3, the unicellular map U contains a spanning tree T which is oriented
from the leaves to the root vertex. The tree T contains exactly n − 1 edges, so there is
exactly 2 edges of U that are not in T . We call these edges the special edges of U . We
cut these two special edges to transform them into stems of T (see Fig. 16a, b). We
keep the information of where are the special stems in T and on which angle of T they
should be reattached. This information can be stored with O(log(n)) bits. One can
recover U from T by reattaching the special stems in order to form non-contractible
cycles with T (see Fig. 16c).

So T is a plane tree on n vertices, each vertex having 2 stems except the root vertex
v0 having three stems. Choose any stem s0 of the root vertex, remove it and consider
that T is rooted at the angle where s0 should be attached. The information of the root
enables to put back s0 at its place. So now we are left with a rooted plane tree T on n
vertices where each vertex has exactly 2 stems (see Fig. 17a).

This tree T can easily be encoded by a binary word on 6n − 2 bits: that is, walking
in counterclockwise order around T from the root angle, writing a “1” when going
down along T (our convention for down is with the root vertex at the top), and a “0”
when going up along T (see Fig. 17a). As in [20], one can encode T more compactly
by using the fact that each vertex has exactly two stems. Thus T is encoded by a binary
word on 4n−2 bits: that is, walking in counterclockwise order around T from the root
angle, writing a “1” when going down along an edge of T , and a “0” when going up
along an edge or along a stem of T (see Fig. 17b where the “red 1’s” of Fig. 17a have
been removed). Indeed there is no need to encode when going down along stems, as
this information can be retrieved afterward. While reading the binary word to recover
T , when a “0” is met, we should go up in the tree, except if the vertex that we are
considering does not have already its two stems, then in that case we should create a
stem (i.e. add a “red 1” before the “0”). So we are left with a binary word on 4n − 2
bits with exactly n − 1 bits “1” and 3n − 1 bits “0”.
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Fig. 17 Encoding a rooted tree with two stems at each vertex

Similarly to [20], using [6, Lem. 7], this word can then be encoded with a binary
word of length log2

(4n−2
n−1

) + o(n) ∼ n log2
( 256

27

) ≈ 3.2451 n bits. Thus we have the
following theorem whose linearity is discussed in Sect. 8:

Theorem 5 Any toroidal triangulation on n vertices, can be encoded with a binary
word of length 3.2451n + o(n) bits, the encoding and decoding being linear in n.

8 Linear Complexity

In this section we show that the encoding method described in this paper, that is
encoding a toroidal triangulation via a unicellular map and recovering the original
triangulation, can be performed in linear time. The only difficulty lies in providing
Algorithm PS with the appropriate input it needs in order to apply Theorem 3. Then
clearly the execution of Algorithm PS, the encoding phase and the recovering of
the triangulation are linear. Thus we have to show how one can find in linear time a
root angle a0 that is not in the strict interior of a separating triangle, as well as the
minimal HTC Schnyder wood w.r.t. the root face f0.

Consider a toroidal triangulation G. Let us see how one can build a Schnyder
wood of G in linear time. The contraction of a non-loop-edge e of G is the operation
consisting of continuously contracting e until merging its two ends, as shown in Fig. 18.
Note that only one edge of each pair of homotopic multiple edges is preserved (edges
ewx and ewy in the figure). Note that the contraction operation is also defined when
some vertices are identified: x = u and y = v, or, x = v and y = u.

An edge e is said to be contractible if it is not a loop and if after contracting e
and identifying the borders of the two newly created length two faces, one obtains
a triangulation that is still without contractible loop or homotopic multiple edges. In
[15] the existence of crossing Schnyder wood is proved by contraction. Unfortunately
this proof cannot easily be transformed into a linear algorithm because of the crossing
property that has to be maintained during the contraction process. Nevertheless we use
contractions to obtain non-necessarily crossing Schnyder woods. If the triangulation
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Fig. 18 The contraction operation

obtained after contracting a contractible edge admits a Schnyder wood it is then easy
to obtain a Schnyder wood of G. The rules for decontracting an edge in the case of
toroidal triangulations are depicted in [15, Fig. 21] where for each case one can choose
any of the proposed colorings. For any toroidal triangulation, one can find contractible
edges until the toroidal map has only one vertex (see [19]). A Schnyder wood of the
toroidal map on one vertex is depicted on the right of Fig. 3. Thus one can obtain a
Schnyder wood of any toroidal triangulation by this process. Nevertheless, to maintain
linearity we have to be more precise since it is not trivial to find contractible edges.

Consider an edge e of G with distinct ends u, v, and with incident faces uvx and
vuy, such that these vertices appear in clockwise order around the corresponding face
(so we are in the situation of Figure 18). The edge e is contractible if and only if,
every walk enclosing an open disk containing a face other than uvx and vuy, goes
through an edge distinct from e at least three times. Equivalently e is non-contractible
if and only if it belongs to a separating triangle or u, v are both incident to a loop-edge
�u, �v , respectively, such that the walk of length four (�u, e, �v, e) encloses an open
disk with at least three faces (i.e. with at least one face distinct from uvx and vuy).
To avoid the latter case, if vertex u is incident to a loop-edge �u , we consider e to be
an edge that is consecutive to that loop, so that we have x = u. In such a case, if there
is a loop �v incident to v and a walk of length four of the form (�u, e, �v, e) enclosing
a disk with at least three faces, then there is also a separating triangle containing e. In
the following we show how to find such separating triangle, if there is one. If u and
v have more common neighbors, than simply x and y, consider their second common
neighbor going clockwise around u from e (the first one being x , and the last being y)
and call it x ′. Call y′ their second common neighbor going counterclockwise around u
from e. Now, either uvx ′ or uvy′ is a separating triangle or the edge e is contractible.
We consider these two cases below:

• If e is contractible, then it is contracted and we apply the procedure recursively
to obtain a Schnyder wood of the contracted graph. Then we update the Schnyder
wood as described above. Note that this update is done in constant time.

• If uvx ′ (resp. uvy′) is a separating triangle, one can remove its interior, recursively
obtain a toroidal Schnyder wood of the remaining toroidal triangulation, build a
planar Schnyder wood of the planar triangulation inside uvx ′ (resp. uvy′), and then
superimpose the two (by eventually permuting the colors) to obtain a Schnyder
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wood of the whole graph. Note that computing a planar Schnyder wood can be
done in linear time using a canonical ordering (see [17]).

The difficulty here is to test whether uvx ′ or uvy′ are triangles. For that purpose,
one first needs to compute a basis (B1, B2) for the homology. Consider a spanning tree
of the dual map G∗. The map obtained from G by removing those edges is unicellular,
and removing its treelike parts one obtains two cycles (B1, B2) (intersecting on a path
with at least one vertex) that form a basis for the homology. This can be computed in
linear time for G and then updated when some edge is contracted or when the interior
of some separating triangle is removed. The updating takes constant time when some
edge is contracted, and it takes O(n′) time when removing n′ vertices in the interior of
some separating triangle. The overall cost of constructing and maintaining the basis
is thus linear in the size of G. Then a closed walk of length three W , given with an
arbitrary orientation, encloses a region homeomorphic to an open disk if and only if
W crosses Bi from right to left as many times as W crosses Bi from left to right, for
every i ∈ {1, 2}. This test can be done in constant time for uvx ′ and uvy′ once the
half edges on the right and left sides of the cycles Bi are marked. Marking the half
edges of G and maintaining this marking while contracting edges or while removing
the interior of separating triangles can clearly be done in linear time. We thus have
that the total running time to compute a Schnyder wood of G is linear.

From this Schnyder wood, one can compute in linear time a root angle a0 not in
the strict interior of a separating triangle. First note that in a 3-orientation of a toroidal
triangulation, the edges that are inside a separating triangle and that are incident to
the three vertices on the border are all oriented toward these three vertices by Euler’s
formula. Thus an oriented non-contractible cycle cannot enter in the interior of a
separating triangle. Now follow any oriented monochromatic path of the Schnyder
wood and stop the first time this path is back to a previously met vertex v0. The end of
this path forms an oriented monochromatic cycleC containing v0. IfC is a contractible
cycle then Euler’s formula is violated in the contractible region. Thus C is an oriented
non-contractible cycle and cannot contain some vertices that are in the interior of a
separating triangle. So v0 is not in the interior of a separating triangle and we can
choose as root angle a0 any angle incident to v0.

In [16] (see also [18]) it is proved how one can transform any 3-orientation (hence
a Schnyder wood) of a toroidal triangulation into a HTC Schnyder wood. The method
consists in computing a so called “middle-path” (a directed path where the next
edge chosen is the one leaving in the “middle”) and reversing some non-contractible
“middle-cycles”. Clearly the method is linear even if not explicitly mentioned in [16].
Let D0 be the corresponding obtained orientation of G.

It remains to compute the minimal HTC Schnyder wood w.r.t. the root face f0.
There is a generic known method Meunier, F.: Personal communication (2015) (see
also [23, p. 23]) to compute in linear time a minimal α-orientation of a planar map as
soon as an α-orientation is given. This method also works on oriented surfaces and
can be applied to obtain the minimal HTC Schnyder wood in linear time. We explain
the method briefly below.

It is much simpler to compute the minimal orientation Dmin homologous to D0
in a dual setting. The first observation to make is that two orientations D1, D2 of G
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are homologous if and only if there dual orientations D∗
1 , D∗

2 of G∗ are equivalent up
to reversing some directed cuts. Furthermore D1 ≤ f0 D2 if and only if D∗

1 can be
obtained from D∗

2 by reversing directed cuts oriented from the part containing f0. Let
us compute D∗

min which is the only orientation of G∗, obtained from D∗
0 by reversing

directed cuts, and without any directed cut oriented from the part containing f0. For
this, consider the orientation D∗

0 of G∗ = (F, E∗) and compute the set X ⊆ F of
vertices of G∗ that have an oriented path toward f0. Then (X, F \ X) is a directed
cut oriented from the part containing f0 that one can reverse. Then update the set of
vertices that can reach f0 and go on until X = F . It is not difficult to see that this can
be done in linear time. Thus we obtain the minimal HTC Schnyder wood w.r.t. f0 in
linear time.

9 Bijection with Rooted Unicellular Maps

Given a toroidal triangulation G with a root angle a0, we have defined a unique asso-
ciated orientation: the minimal HTC Schnyder wood w.r.t. the root face f0. Suppose
that G is oriented according to the minimal HTC Schnyder wood. If a0 is not in the
strict interior of a separating triangle then Theorems 3 and 4 show that the execution
of Algorithm PS on (G, a0) gives a toroidal unicellular map with stems from which
one can recover the original triangulation. Thus there is a bijection between toroidal
triangulations rooted from an appropriate angle and their image by Algorithm PS.
The goal of this section is to describe this image.

Recall from Sect. 6 that the output of Algorithm PS on (G, a0) is an element
of Ur,b(n). One may hope that there is a bijection between toroidal triangulations
rooted from an appropriate angle and Ur,b(n) since this is how it works in the planar
case. Indeed, given a planar triangulation G, there is a unique orientation of G (the
minimal Schnyder wood) on which Algorithm PS, performed from an outer angle,
outputs a spanning tree. In the toroidal case, things are more complicated since the
behavior of Algorithm PS on minimal HTC Schnyder woods does not characterize
such orientations.

Figure 19 gives an example of two (non-homologous) orientations of the same
triangulation that are both minimal w.r.t. the same root face. For these two orientations,
the execution ofAlgorithm PS from the same root angle gives two different elements
of Ur,b(2) (from which the original triangulation can be recovered by the method of
Theorem 4). Thus we have to exhibit a particular property of HTC Schnyder woods
that can be used to characterize which particular subset of Ur,b(n) is in bijection with
appropriately rooted toroidal triangulations.

For that purpose we now introduce a function γ which is reminiscent to the one
in [16]. Consider a particular orientation of G. Let C be a cycle that is given with an
arbitrary direction (C is not necessarily a directed cycle). Then γ (C) is defined by,

γ (C) = # edges leaving C on its right − # edges leaving C on its left .

By the Schnyder property, it is clear that in a toroidal Schnyder wood, a mono-
chromatic cycle C always satisfies γ (C) = 0. Consider a crossing Schnyder wood
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HTC orientation non-HTC orientation

Fig. 19 A graph that can be represented by two different unicellular maps

of G and C1,C2 two monochromatic cycles of different colors. Thus we have
γ (C1) = γ (C2) = 0. By [15, Thm. 7], the two cycles C1,C2 are non-contractible
and non-homologous, thus they form a basis for the homology. While returning a
0-homologous oriented subgraph, the value of γ on a given cycle does not change.
Thus any HTC Schnyder wood also satisfies γ (C1) = γ (C2) = 0. Moreover it is
proved in [16] (see also [18]) that if a 3-orientation of a toroidal triangulation sat-
isfies γ equals 0 for two cycles forming a basis for the homology, then γ equals 0
for any non-contractible cycle. Thus any HTC Schnyder wood satisfies γ equals 0
for any non-contractible cycle. We call this property the γ0 property. Note that, for a
3-orientation, it is sufficient to satisfy γ equals 0 on any two cycles forming a basis
for the homology to have the γ0 property.

Actually the γ0 property characterizes the 3-orientations that are HTC Schnyder
woods. Indeed a consequence of [16, Thm. 5 and Lem. 18] is that if two 3-orientations
both satisfy the γ0 property, then they are homologous to each other and thus HTC.
Note that for the 3-orientation on the right of Fig. 19, we have γ equals ±2 for the
horizontal cycle and this explain why this orientation is not HTC (one can find similar
arguments for previous examples of non-HTC Schnyder woods presented in this paper,
see Figs. 5, 7).

Let us translate this γ0 property on Ur (n). Consider an element U of Ur (n) whose
edges and stems are oriented w.r.t. the root angle as follows: the stems are all outgoing,
and while walking clockwise around the unique face of U from a0, the first time an
edge is met, it is oriented counterclockwise w.r.t. the face ofU . Then one can compute
γ on the cycles of U (edges and stems count). We say that a unicellular map of Ur (n)

satisfies the γ0 property if γ equals zero on its (non-contractible) cycles. Let us call
Ur,b,γ0(n) the set of elements of Ur,b(n) satisfying the γ0 property. So the output of
Algorithm PS given by Theorem 3 is an element of Ur,b,γ0(n).

Let Tr (n) be the set of toroidal triangulations on n vertices rooted at an angle that is
not in the strict interior of a separating triangle. Then we have the following bijection:

Theorem 6 There is a bijection between Tr (n) and Ur,b,γ0(n).

Proof Consider the mapping g that associates to an element of Tr (n), the output of
Algorithm PS executed on the minimal HTC Schnyder wood w.r.t. the root face.
By the above discussion the image of g is in Ur,b,γ0(n) and g is injective since one can
recover the original triangulation from its image by Theorem 4.

Conversely, given an element U of Ur,b,γ0(n) with root angle a0, one can build a
toroidal map G by the complete closure procedure described in Sect. 6. The number
of stems and edges of U implies that G is a triangulation. Recall that a0 defines an
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orientation on the edges and stems of U . Consider the orientation D of G induced
by this orientation. Since U is balanced, the execution of Algorithm PS on (G, a0)

corresponds to the cycle in the angle graph of U obtained by starting from the root
angle and walking clockwise in the face of U . Thus the output of Algorithm PS
executed on (G, a0) is U . It remains to show that G is appropriately rooted and that
D corresponds to the minimal HTC Schnyder wood w.r.t. this root.

First note that by definition of Ur (n), the orientation D is a 3-orientation.
Suppose by contradiction thata0 is in the strict interior of a separating triangle. Then,

since we are considering a 3-orientation, by Euler’s formula, the edges in the interior
of this triangle and incident to its border are all entering the border. So Algorithm
PS started from the strict interior cannot visit the vertices on the border of the triangle
and outside. Thus the output of Algorithm PS is not a toroidal unicellular map, a
contradiction. So a0 is not in the strict interior of a separating triangle.

The γ0 property of U implies that γ equals zero on two cycles of U . Hence these
two cycles considered in G also satisfy γ equals 0 and form a basis for the homology.
So D is an HTC Schnyder wood.

Suppose by contradiction that D is not minimal. Then, by Lemma 1, it contains a
clockwise (non-empty) 0-homologous oriented subgraph w.r.t. f0. With the notations
of Sect. 3, let T be such a subgraph with φ(T ) = −∑

F∈F ′ λFφ(F), with λ ∈ N
|F ′|.

Let λF0 = 0, and λmax = maxF∈F λF . For 0 ≤ i ≤ λmax, let Xi = {F ∈ F | λF ≥ i}.
For 1 ≤ i ≤ λmax, let Ti be the oriented subgraph such that φ(Ti ) = −∑

F∈Xi
φ(F).

Then we have φ(T ) = ∑
1≤i≤λmax

φ(Ti ). Since T is an oriented subgraph, we have
φ(T ) ∈ {−1, 0, 1}|E(G)|. Thus for any edge of G, incident to faces F1 and F2, we have
(λF1 − λF2) ∈ {−1, 0, 1}. So, for 1 ≤ i ≤ λmax, the oriented graph Ti is the frontier
between the faces with λ value equal to i and i − 1. So all the Ti are edge disjoint
and are oriented subgraphs of D. Since T is non-empty, we have λmax ≥ 1, and T1
is non-empty. All the edges of T1 have a face of X1 on their right and a face of X0
on their left. Since U is an unicellular map, and T1 is a (non-empty) 0-homologous
oriented subgraph, at least one edge of T1 corresponds to a stem of U . Let s be the last
stem of U corresponding to a edge of T1 that is reattached by the complete closure
procedure. Consider the step where s is reattached. As the root angle (and thus f0) is
in the special face (see the terminology of Sect. 6), the special face is in the region
defined by X0. Thus it is on the left of s when it is reattached. This contradicts the fact
that U is balanced. Thus D is the minimal HTC Schnyder wood w.r.t. f0. 
�

10 The Lattice of HTC Schnyder Woods

In this section, we push further the study of HTC Schnyder woods in order to remove
the root and the balanced property of the unicellular maps considered in Theorem 6
and obtain a simplified bijection in Theorem 7 of Sect. 11.

Consider a toroidal triangulation G given with a crossing Schnyder wood. Let D0
be the corresponding 3-orientation of G. Let f0 be any face of G. Recall from Sect. 3
that O(G) denotes the set of all the orientations of G that are homologous to D0. The
elements of O(G) are the HTC Schnyder woods ofG and (O(G),≤ f0) is a distributive
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lattice. We first recall some general results and terminology from [16] before studying
the consequences of considering HTC Schnyder woods.

We need to reduce the graph G. We call an edge of G rigid w.r.t. O(G) if it has the
same orientation in all the elements of O(G). Rigid edges do not play a role for the
structure of O(G). We delete them from G and call the obtained embedded graph G̃.
Note that this graph is embedded but it is not necessarily a map, as some faces may
not be homeomorphic to open disks. Note also that G̃ might be empty if all the edges
are rigid, i.e. |O(G)| = 1 and G̃ has no edge but a unique face that is all the surface.

Lemma 11 [16] Given an edge e of G, the following are equivalent:

1. e is non-rigid,
2. e is contained in a 0-homologous oriented subgraph of D0,
3. e is contained in a 0-homologous oriented subgraph of any element of O(G).

By Lemma 11, one can build G̃ by keeping only the edges that are contained in
a 0-homologous oriented subgraph of D0. Note that this implies that all the edges of
G̃ are incident to two distinct faces of G̃. Denote by F̃ the set of oriented subgraphs
of G̃ corresponding to the boundaries of faces of G̃ considered counterclockwise. Let
f̃0 be the face of G̃ containing f0 and F̃0 be the element of F̃ corresponding to the
boundary of f̃0. Let F̃ ′ = F̃ \ F̃0. The elements of F̃ ′ are sufficient to generate the
entire lattice (O(G),≤ f0) (see [16]), i.e. two elements D, D′ of O(G) are linked in
the Hasse diagram of the lattice, with D ≤ f0 D′, if and only if D \ D′ ∈ F̃ ′.

Lemma 12 [16] For every element F̃ ∈ F̃ there exists D in O(G) such that F̃ is an
oriented subgraph of D.

By Lemma 12, for every element F̃ ∈ F̃ ′ there exists D in O(G) such that F̃ is
an oriented subgraph of D. Thus there exists D′ such that F̃ = D \ D′ and D, D′ are
linked in the Hasse diagram of the lattice. Thus the elements of F̃ ′ form a minimal set
that generates the lattice.

Let Dmax (resp. Dmin) be the maximal (resp. minimal) element of (O(G),≤ f0).

Lemma 13 [16] F̃0 (resp. −F̃0) is an oriented subgraph of Dmax (resp. Dmin).

From now on we use some specific properties of the object considered in this paper,
i.e. HTC Schnyder woods.

Lemma 14 Consider an orientation D in O(G) and a closed walk W of G̃. If on the
left side of W, there is no incident outgoing edges of D, then W is a triangle with its
interior on its left side.

Proof Consider a closed walk W of G̃ such that on its left side there is no incident
outgoing edges of D. Let Wleft be the edges of D that are incident to the left side of
W . By assumption they are all entering W . Note that W cannot cross itself otherwise
it has at least one incident outgoing edges of D on its left side. However it may have
repeated vertices but in that case it intersects itself tangentially on the right side.

Suppose first that W is a non-contractible cycle. Then consider the closed walk
W ∗ of the dual orientation D∗ that is obtained by considering all the dual edges of
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Wleft with their corresponding orientation. Since all the edges of Wleft are entering W
we have that W ∗ is an oriented closed walk. Moreover it is non-contractible and thus
contains an oriented non-contractible cycle, a contradiction to Lemma 2. So W is not
a non-contractible cycle.

Suppose by contradiction that there is an oriented subwalk W ′ of W , that forms a
cycle C enclosing a region R on its right side that is homeomorphic to an open disk.
Let v be the starting and ending vertex of W ′. Note that we do not consider that W ′
is a strict subwalk of W , so we might have W ′ = W . Consider the graph G ′ obtained
from G by keeping all the vertices and edges that lie in the region R, including W ′.
Since W can intersect itself only tangentially on the right side, we have that G ′ is a
plane map whose outer face boundary is W ′ and whose interior is triangulated. Let
k be the length of W ′. Let n′,m′, f ′ be the number of vertices, edges and faces of
G ′. By Euler’s formula, n′ − m′ + f ′ = 2. All the inner faces have length 3 and the
outer face has length k, so 2m′ = 3( f ′ − 1) + k. Since there is no outgoing incident
edges of D on the left side of W , all the vertices of G ′, except v, have their outgoing
edges in G ′. Since W ′ is oriented, v has at least one outgoing edge in G ′. Thus, as we
are considering a 3-orientation, we have m′ ≥ 3(n′ − 1) + 1. Combining these three
equalities gives k ≤ −1, a contradiction. So there is no oriented subwalk of W , that
forms a cycle enclosing an open disk on its right side.

Recall that since there is no incident outgoing edges of G on the left side of W ,
the walk W can only intersect itself tangentially and on its right side. Thus following
W on its left, one draws a curve that does not intersect itself. This curve is thus either
enclosing a region homeomorphic to an open disk or forming a non-contractible non-
self intersecting curve. Suppose, by contradiction, that we are in the second case. Since
there is no subwalk of W , that forms a cycle enclosing an open disk on its right side,
we have that W is a non-contractible cycle, a contradiction. So the left side of W
encloses a region R homeomorphic to an open disk.

Consider the graph G ′ obtained from G by keeping only the vertices and edges
that lie in the region R, including W . The vertices of W appearing several times are
duplicated so that G ′ is a plane triangulation of a cycle. Let k be the length of W .
Let n′,m′, f ′ be the number of vertices, edges and faces of G ′. By Euler’s formula,
n′ −m′ + f ′ = 2. All the inner faces have length 3 and the outer face has length k, so
2m′ = 3( f ′ − 1) + k. All the inner vertices have outdegree 3 as we are considering a
3-orientation of G. All the edges of Wleft are oriented toward W , and there are k outer
edges, so m′ = 3(n′ − k) + k. Combining these three equalities gives k = 3, i.e. W
has length three and the lemma holds. 
�

The boundary of a face of G̃ may be composed of several closed walks. Let us
call quasi-contractible the faces of G̃ that are homeomorphic to a disk or to a disk
with punctures. Note that such a face may have several boundaries (if there is some
punctures) but exactly one of these boundaries enclose the face. Let us call outer facial
walk this special boundary. Then we have the following:

Lemma 15 All the faces of G̃ are quasi-contractible and their outer facial walk is a
triangle.
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Proof Suppose by contradiction that there is a face f̃ of G̃ that is not quasi-contractible
or whose outer facial walk is not a triangle. Let F̃ be the element of F̃ corresponding
to the boundary of f̃ . By Lemma 12, there exists an orientation D in O(G) such that
F̃ is an oriented subgraph of D.

All the faces of G have length three. Thus f̃ is not a face of G and contains in its
interior at least one edge of G. Start from any such edge e and consider the left-walk
W = (ei )i≥0 of D obtained by the following: if the edge ei is entering a vertex v, then
ei+1 is choosen among the three edges leaving v as the edge that is on the left coming
from ei (i.e. the first one while going clockwise around v). Suppose that for i ≥ 0,
edge ei is entering a vertex v that is on the border of f̃ . Recall that by definition F̃ is
oriented counterclockwise according to its interior, so either ei+1 is in the interior of
f̃ or ei+1 is on the border of f̃ . Thus W cannot leave f̃ .

Since G has a finite number of edges, some edges are used several times in W .
Consider a minimal subsequence W ′ = ek, . . . , e� such that no edge appears twice
and ek = e�+1. Thus W ends periodically on the sequence of edges ek, . . . , e�.
By Lemma 14, all the closed walks that are part of F̃ have some outgoing incident
edges of D on their left side. Thus we have that W ′ contains at least one edge that is
not an edge of F̃ , thus it contains at least one rigid edge.

By construction, on the left side of W ′, there is no incident outgoing edges of D. So,
by Lemma 14, W ′ is a triangle with its interior on its left side. So W ′ is a 0-homologous
oriented subgraph of D, thus all its edges are non-rigid by Lemma 11, a contradiction.


�

By Lemma 15, every face of G̃ is quasi-contractible and its outer facial walk is a
triangle. So G̃ contains all the triangles of G whose interiors are maximal by inclusion,
i.e. it contains all the edges that are not in the interior of a separating triangle. In
particular, G̃ is non-empty and |O(G)| ≥ 2. The status (rigid or not) of an edge lying
inside a separating triangle is determined as in the planar case: such an edge is rigid
if and only if it is in the interior of a separating triangle and incident to this triangle.
Thus an edge of G is rigid if and only if it is in the interior of a separating triangle and
incident to this triangle.

Since (O(G),≤ f0) is a distributive lattice, any element D of O(G) that is distinct
from Dmax and Dmin contains at least one neighbor above and at least one neighbor
below in the Hasse diagram of the lattice. Thus it has at least one face of G̃ oriented
counterclockwise and at least one face of G̃ oriented clockwise. Thus by Lemma 15,
it contains at least one triangle oriented counterclockwise and at least one triangle
oriented clockwise. Next lemma shows that this property is also true for Dmax and
Dmin.

Lemma 16 In Dmax (resp. Dmin) there is a counterclockwise (resp. clockwise) triangle
containing f0, and a clockwise (resp. counterclockwise) triangle not containing f0.

Proof By Lemma 15, f̃0 is quasi-contractible and its outer facial walk is a triangle T .
By lemma 13, F̃0 is an oriented subgraph of Dmax. Thus T is oriented counterclockwise
and contains f0. The second part of the lemma is clear since |O(G)| ≥ 2 so Dmax has
at least one neighbor below in the Hasse diagram of the lattice. Similarly for Dmin. 
�
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Fig. 20 Angles that are in a
separating triangle but not in its
clockwise interior

Thus by above remarks and Lemma 16, all the HTC Schnyder woods have at least
one triangle oriented counterclockwise and at least one triangle oriented clockwise.
Note that this property does not characterize HTC Schnyder woods. Figure 7 gives
an example of a Schnyder wood that is not HTC but satisfies the property. Note also
that not all Schnyder woods satisfy the property. The right of Fig. 5 is an example of
a Schnyder wood that is no HTC and has no oriented triangle.

Lemma 16 is used in the next section to obtained a bijection with unrooted unicel-
lular maps.

11 Bijection with Unrooted Unicellular Maps

To remove the root and the balanced property of the unicellular maps considered in
Theorem 6, we have to root the toroidal triangulation more precisely than before. We
say that an angle is not in the clockwise interior of a separating triangle if it is not in
its interior, or if it is incident to a vertex v of the triangle and situated just before an
edge of the triangle in counterclockwise order around v (see Fig. 20).

Consider a toroidal triangulation G. Consider a root angle a0 that is not in the
clockwise interior of a separating triangle. Note that the choice of a0 is equivalent
to the choice of a root vertex v0 and a root edge e0 incident to v0 such that none
is in the interior of a separating triangle. Consider the orientation of the edges of
G corresponding to the minimal HTC Schnyder wood w.r.t. the root face f0. By
Lemma 16, there is a clockwise triangle containing f0. Thus by the choice of a0, the
edge e0 is leaving the root vertex v0. This is the essential property used in this section.
Consider the output U of Algorithm PS on (G, a0). Since e0 is leaving v0 and a0 is
just before e0 in counterclockwise order around v0, the execution of Algorithm PS
starts by Case 2 and e0 corresponds in U to a stem s0 attached to v0. We call this stem
s0 the root stem.

The recovering method defined in Theorem 4 says that s0 is the last stem reattached
by the procedure. So there exists a sequence of admissible triples of U (see the termi-
nology and notations of Sect. 6) such that s0 belongs to the last admissible triple. Let
U0 = U and for 1 ≤ k ≤ 2n − 2, the map Uk is obtained from Uk−1 by closing any
admissible triple that does no contain s0. As noted in Sect. 6, the special face of U2n−2
is a quadrangle with exactly one stem. This stem being s0, we are in the situation of
Fig. 21.

Consequently, if one removes the root stem s0 from U to obtain a unicellular map
U ′ with n vertices, n+ 1 edges and 2n− 2 stems, one can recover the graph U2n−2 by
applying a complete closure procedure on U ′ (see example of Fig. 22). Note that then,
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Fig. 21 The situation just
before the last stem (i.e. the root
stem) is reattached
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Fig. 22 Example of K7 where the root angle, the root stem and the orientation w.r.t. the root angle have
been removed from the output of Fig. 9. The complete closure procedure leads to a quadrangular face

there are four different ways to finish the closure ofU2n−2 to obtain an oriented toroidal
triangulation. This four cases correspond to the four ways to place the (removed) root
stem in a quadrangle, they are obtained by pivoting Fig. 21 by 0◦, 90◦, 180◦ and 270◦.
Note that only one of this four cases leads to the original rooted triangulation G, except
if there are some symmetries (like in the example of Fig. 22).

Let U(n) denote the set of (non-rooted) toroidal unicellular maps, with exactly n
vertices, n + 1 edges and 2n − 2 stems satisfying the following: a vertex has exactly
2 stems if it is not a corner, 1 stem if it is the corner of an hexagon and 0 stem if it is
the corner of a square. Note that the output of Theorem 3 on an appropriately rooted
toroidal triangulation is an element of U(n) when the root stem is removed.

Note that an element U ′ of U(n) is non-rooted so we cannot orient automatically
its edges w.r.t. the root angle like in Sect. 9. Nevertheless one can still orient all the
stems as outgoing and compute γ on the cycles of U ′ by considering only its stems in
the counting (and not the edges nor the root stem anymore). We say that a unicellular
map of U(n) satisfies the γ0 property if γ equals zero on its (non-contractible) cycles.
Let us call Uγ0(n) the set of elements of U(n) satisfying the γ0 property.

A surprising property is that an element U ′ of U(n) satisfies the γ0 property if and
only if any elementU ofUr (n) obtained fromU ′ by adding a root stem anywhere inU ′
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Fig. 23 The parts of the
unicellular map showing the
correspondence while
computing γ with or without the
orientation w.r.t. the root plus
the root stem
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Fig. 24 The difference between
the rooted output of Fig. 9 and
the non-rooted output of Fig. 22
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satisfies the γ0 property (note that inU we count the edges and the root stem to compute
γ ). One can see this by considering the unicellular map of Fig. 23. It represents the
general case of the underlying rooted hexagon of U . The edges represent in fact paths
(some of which can be of length zero). One can check that it satisfies γ equals zero on
its (non-contractible) cycles. It corresponds exactly to the set of edges that are taken
into consideration when computing γ on U but not when computing γ on U ′. Thus it
does not affect the counting (the tree-like parts are not represented since they do not
affect the value γ ). So the output of Theorem 3 on an appropriately rooted toroidal
triangulation is an element of Uγ0(n) when the root stem is removed.

For the particular case of K7, the difference between the rooted output of Fig. 9 and
the non-rooted output of Fig. 22 is represented in Fig. 24 (one can superimpose the
last two to obtain the first). One can check that these three unicellular maps (rooted,
non-rooted and the difference) all satisfy γ equals zero on their cycles.

There is an “almost” four-to-one correspondence between toroidal triangulations
on n vertices, given with a root angle that is not in the clockwise interior of a separating
triangle, and elements of Uγ0(n). The “almost” means that if the automorphism group
of an element U of Uγ0(n) is not trivial, some of the four ways to add a root stem in U
are isomorphic and lead to the same rooted triangulation. In the example of Fig. 22,
one can root in four ways the quadrangle but this gives only two different rooted
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triangulations (because of the symmetries of K7). We face this problem by defining
another class for which we can formulate a bijection.

Let T (n) be the set of toroidal maps on n vertices, where all the faces have length
three, except one that has length four and which is not in a separating triangle. Then
we have the following bijection:

Theorem 7 There is a bijection between T (n) and Uγ0(n).

Proof Let a (for “add”) be an arbitrarily chosen mapping defined on the maps G ′ of
T (n) that adds a diagonal e0 in the quadrangle of G ′ and roots the obtained toroidal
triangulation G at a vertex v0 incident to e0 (this defines the root angle a0 situated just
before e0 in counterclockwise order around v0). Note that the added edge cannot create
homotopic multiple edges, since otherwise the quadrangle would be in a separating
triangle. Moreover the root angle of G is not in the clockwise interior of a separating
triangle. Thus the image of a is in T ′

r (n), the subset of Tr (n) corresponding to toroidal
triangulations rooted at an angle that is not in the clockwise interior of a separating
triangle.

Let U ′
r,b,γ0

(n) be the elements of Ur,b,γ0(n) that have their root angle just before
a stem in counterclockwise order around the root vertex. Consider the mapping g,
defined in the proof of Theorem 9. By above remarks and Theorem 9, the image of g
restricted to T ′

r (n) is in U ′
r,b,γ0

(n). Let r (for “remove”) be the mapping that associates
to an element of U ′

r,b,γ0
(n) an element of Uγ0(n) obtained by removing the root angle

and its corresponding stem. Finally, let h = r ◦ g ◦ a which associates to an element
of T (n) an element of Uγ0(n). Let us show that h is a bijection.

Consider an element G ′ of T (n) and its image U ′ by h. The complete closure
procedure on U ′ gives G ′ thus the mapping h is injective.

Conversely, consider an element U ′ of Uγ0(n). Apply the complete closure proce-
dure on U ′. At the end of this procedure, the special face is a quadrangle whose angles
are denoted α1, . . . , α4. We denote also by α1, . . . , α4 the corresponding angles of
U ′. For i ∈ {1, . . . , 4}, let Ui be the element of Ur (n) obtained by adding a root stem
and a root angle in the angle αi of U ′, with the root angle just before the stem in
counterclockwise order around the root vertex. Note that by the choice of αi , the Ui

are all balanced. By above remarks they also satisfy the γ0 property and thus they are
in U ′

r,b,γ0
(n).

By the proof of Theorem 6, the complete closure procedure onUi gives a triangula-
tion Gi of Tr (n) that is rooted from an angle ai0 not in the strict interior of a separating
triangle and oriented according to the minimal HTC Schnyder wood w.r.t. the root
face. Moreover the output of Algorithm PS applied on (Gi , ai0) is Ui . Since in Ui ,
the root stem is present just after the root angle, the first edge seen by the execution
of Algorithm PS on (Gi , ai0) is outgoing. So a0 is not in the clockwise interior
of a separating triangle (in a 3-orientation, all the edges that are in the interior of a
separating triangle and incident to the triangle are entering the triangle). Thus the Gi

are appropriately rooted and are elements of T ′
r (n). Removing the root edge of any

Gi , gives the same map G ′ of T (n). Exactly one of the Gi is the image of G ′ by the
mapping a. Thus the image of G ′ by h is U ′ and the mapping h is surjective. 
�
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A nice aspect of Theorem 7 comparing to Theorem 6 is that the unicellular maps that
are considered are much simpler. They have no root nor balanced property anymore.
It would be great to use Theorem 7 to count and sample toroidal triangulations. The
main issue comparing to the planar case seems to be the γ0 property.

12 Conclusion

Note that the work presented here is related to a work of Bernardi and Chapuy [5] (their
convention for the orientation of the edges is the reverse of ours). Consider a map G
(not necessarily a triangulation) on an oriented surface of genus g, rooted at a particular
angle a0. An orientation of G is right if for each edge e, the right-walk starting from e
(when entering a vertex, the next chosen edge is the one leaving on the right) reaches
the root edge e0 via the root vertex v0. A consequence of [5] is that Algorithm PS
applied on an orientation of (G, a0) outputs a spanning unicellular submap U if and
only if the considered orientation is right. Note that in this characterization, the submap
U is not necessarily a map of genus g, its genus can be any value in {0, . . . , g}. In the
particular case of toroidal triangulations we show that by considering minimal HTC
Schnyder woods the output U is a toroidal spanning unicellular map. Hence by the
above characterization, minimal HTC Schnyder woods are right. But here, the fact that
U and G have the same genus is of particular interest as it yields a simple bijection.

The key property that makesU andG have same genus is the conclusion of Lemma 2
(no oriented non-contractible cycle in the dual orientation). Recently, Albar, the second
author and Knauer [1] proved the following:

Theorem 8 ([1]) A simple triangulation on a genus g ≥ 1 orientable surface admits
an orientation of its edges such that every vertex has outdegree at least 3, and divisible
by 3.

Theorem 8 is proved for simple triangulation but we believe it to be true for all tri-
angulations. Moreover we hope for a possible generalization satisfying the conclusion
of Lemma 2:

Conjecture 1 A triangulation on a genus g ≥ 1 orientable surface admits an orien-
tation of its edges such that every vertex has outdegree at least 3, divisible by 3, and
such that there is no oriented non-contractible cycle in the dual orientation.

If Conjecture 1 is true, one can consider a minimal orientation satisfying its con-
clusion and apply Algorithm PS to obtain a unicellular map of the same genus as G.
Note that more efforts should be made to obtain a bijection since there might be several
minimal elements satisfying the conjecture and a particular one has to be identified
(as the minimal HTC Schnyder wood in our case).
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