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Abstract: An asteroidal triple is a stable set of three vertices such that
each pair is connected by a path avoiding the neighborhood of the third
vertex. Asteroidal triples play a central role in a classical characterization of
interval graphs by Lekkerkerker and Boland. Their result says that a chordal
graph is an interval graph if and only if it does not contain an asteroidal
triple. In this paper, we prove an analogous theorem for directed path
graphs which are the intersection graphs of directed paths in a directed
tree. For this purpose, we introduce the notion of a special connection.
Two non-adjacent vertices are linked by a special connection if either they

Contract grant sponsor: Natural Sciences and Engineering Research Council of
Canada (NSERC).
Journal of Graph Theory
� 2010 Wiley Periodicals, Inc.

1



2 JOURNAL OF GRAPH THEORY

have a common neighbor or they are the endpoints of two vertex-disjoint
chordless paths satisfying certain conditions. A special asteroidal triple is
an asteroidal triple such that each pair is linked by a special connection.
We prove that a chordal graph is a directed path graph if and only if it does
not contain a special asteroidal triple. � 2010 Wiley Periodicals, Inc. J Graph Theory
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1. INTRODUCTION

A hole is a chordless cycle of length at least four. A graph is a chordal graph if it does
not contain a hole as an induced subgraph. Gavril [5] proved that a graph is chordal if
and only if it is the intersection graph of a family of subtrees of a tree. In this article,
whenever we talk about the intersection of subgraphs of a graph we mean that the
vertex sets of the subgraphs intersect.

A graph is an interval graph if it is the intersection graph of a family of intervals
on the real line; or equivalently, the intersection graph of a family of subpaths of a
path. An asteroidal triple in a graph G is a set of three non-adjacent vertices such that
for any two of them, there exists a path between them in G that does not intersect
the neighborhood of the third. The graph of Figure 1 is an example of a graph that
minimally contains an asteroidal triple; the three vertices forming the asteroidal triple
are circled.

The following classical theorem was proved by Lekkerkerker and Boland.

Theorem 1 (Lekkerkerker and Boland [10]). A chordal graph is an interval graph if
and only if it does not contain an asteroidal triple.

Lekkerkerker and Boland [10] derived from Theorem 1 the list of minimal forbidden
subgraphs for interval graphs.

The class of path graphs lies between interval graphs and chordal graphs. A graph
is a path graph if it is the intersection graph of a family of subpaths of a tree.
Lévêque et al. [11] found a characterization of path graphs by minimal forbidden
subgraphs.

A variant of path graphs has been defined when the tree is a directed graph. A directed
tree is a directed graph whose underlying undirected graph is a tree. A directed subpath
of a directed tree is a subpath whose edges are all directed in the same way. A graph is
a directed path graph if it is the intersection graph of a family of directed subpaths of a

FIGURE 1. Graph containing an asteroidal triple.
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FIGURE 2. Minimal forbidden induced subgraphs for directed path graphs (the
vertices in the cycle marked by bold edges form a clique).

directed tree. Panda [15] found a characterization of directed path graphs by forbidden
subgraphs (see Fig. 2 where the vertices in the cycle marked by bold edges form a
clique and the parameter n in Fi(n) denotes the number of vertices).

Theorem 2 (Panda [15]). A graph is a directed path graph if and only if it does
not contain F0(n)n≥4, F1, F2, F3, F4(n)n≥7, F5, F6, F7, F8(n)n≥8, F9(4k+1)k≥2,
F10(4k+2)k≥2, F11(4k+3)k≥2 and F12(4k+2)k≥1.

The following inclusions hold by definition:

interval graphs ⊂ directed path graphs ⊂ path graphs ⊂ chordal graphs

and these inclusions are strict (see Figs. 4, 5, 6).
In this article, we study directed path graphs. Our result is a characterization of

directed path graphs analogous to the theorem of Lekkerkerker and Boland. For this
purpose, we introduce the notion of a special connection. Two non-adjacent vertices
u and v are linked by a special connection if either they have a common neighbor or
they are the endpoints of two vertex-disjoint chordless paths of length three satisfying
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certain technical conditions. (The complete definition is given in Section 3.) A special
asteroidal triple in a graph G is an asteroidal triple such that each pair of vertices of
the triple is linked by a special connection in G.

Our main result is the following theorem.

Theorem 3. A chordal graph is a directed path graph if and only if it does not
contain a special asteroidal triple.

In Section 2, we give the definitions and background results needed to prove our main
result. In Section 3, we define special connections and establish a property of special
connections in clique directed path trees (which are defined in Section 2). In Section 4,
we give a proof of our main result using the results of Section 3. Finally, in Section 5,
we discuss new problems arising from our work.

2. DEFINITIONS AND BACKGROUND

In a graph G, a clique is a set of pairwise adjacent vertices. Let Q(G) be the set of
all (inclusionwise) maximal cliques of G. When there is no ambiguity we will write
Q instead of Q(G). A vertex in a graph G is called universal if it is adjacent to every
other vertex of G. Given a vertex v and a set S of vertices, v is called complete to
S if v is adjacent to every vertex of S. Given two vertices u and v in a graph G, a
{u,v}-separator is a set S of vertices of G such that u and v lie in different components
of G\S and S is minimal (inclusionwise) with this property. A set is a separator if it
is a {u,v}-separator for some u and v in G. Let S(G) be the set of separators of G.
When there is no ambiguity we will write S instead of S(G). A classical result [8, 1]
(see also [7]) states that, in a chordal graph G, every separator is a clique; moreover,
if S is a separator, then there are at least two components of G\S that contain a vertex
that is complete to S, and so S is the intersection of two maximal cliques.

A clique tree T of a graph G is a tree whose vertices are the members of Q and
such that, for each vertex v of G, those members of Q that contain v induce a subtree
of T , which we will denote by Tv. A classical result of Gavril [5] states that a graph
is chordal if and only if it has a clique tree. A clique path tree T of G is a clique tree
of G such that, for each vertex v of G, Tv is a path. Gavril [6] proved that a graph is
a path graph if and only if it has a clique path tree. A clique directed path tree T of
G is a directed tree such that the underlying undirected tree is a clique path tree of G
and for each vertex v of G, the subpath Tv is a directed path. Monma and Wei [14]
proved that a graph is a directed path graph if and only if it has a clique directed path
tree. A clique path T of G is a clique tree of G such that T is a path. A graph is an
interval graph if and only if it has a clique path [4]. These results allow us to restrict
our attention to intersection models that are clique trees when studying the properties
of these graph classes.

For a clique tree T , the separator of an edge QQ′ of T is defined as SQQ′ =Q∩Q′.
Note that every edge QQ′ satisfies SQQ′ ∈S; indeed, there exist vertices v∈Q\Q′ and
v′ ∈Q′ \Q such that the set SQQ′ is a {v,v′}-separator.

If T is a clique tree of G, and Q, Q′ are maximal cliques of G then T[Q,Q′] denotes
the subpath of T of minimum size whose vertices contain Q and Q′.

Journal of Graph Theory DOI 10.1002/jgt
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Given a set z1, . . . ,zr, r≥2, of pairwise non-adjacent vertices of G, and a clique tree
T of G, the subtrees Tzi , 1≤ i≤r, are disjoint and we can define T(z1, . . . ,zr) to be the
subtree of T of minimum size that contains at least one vertex of each Tzi . Clearly, the
number of leaves of T(z1, . . . ,zr) is at most r. Moreover, if T(z1, . . . ,zr) has exactly r
leaves, then they can be denoted by Qi, 1≤ i≤r, with Qi∈Q and Qi∩{z1, . . . ,zr}={zi}.

We will need the following lemma which is folklore (for example, see [12]).

Lemma 1. Let G be a chordal graph and z1,z2,z3 three vertices that form an aster-
oidal triple, then for every clique tree T of G, the subtree T(z1,z2,z3) has exactly
3 leaves.

For more information about clique trees and chordal graphs, see [2, 7, 13].

3. SPECIAL CONNECTIONS AND CLIQUE DIRECTED PATH TREES

A special connection linking u and v is an induced subgraph of one of the following
forms (see Fig. 3).

FIGURE 3. The four types of special connections.
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• Type 1: vertices u,v,w and edges uw,vw.
• Type 2: vertices u, v, a, b, c, d and edges ua, ub, vc, vd, ab, bc, cd, da, ac.
• Type 3: vertices u, v, a, b, c, d, x, y where vertices a, b, c, d form a clique and
there are also edges ua, ub, vc, vd, xa, xb, xc, yb, yc, yd.

• Type 4: vertices u, v, z0, . . . ,z2t+2,z′1, . . . ,z
′
2t (t≥1) where vertices z0, . . . ,z2t+2 form

a clique and vertex z′k (0≤k≤2t+1, with z′0=u and z′2t+1=v) is adjacent to
zk,zk+1.

Note that in special connections of types 2, 3 and 4, vertices u and v are the endpoints
of two vertex-disjoint chordless paths of length three.

Special connections are interesting when considering directed path graphs because
if u and v are linked by a special connection, then in any directed path graph model T ,
the subpaths of T corresponding to the vertices forming the special connection have to
overlap and they force T to be completely directed in one direction between u and v.
More formally:

Lemma 2. Let G be a directed path graph and let u and v be two non-adjacent
vertices that are linked by a special connection. Then, for every clique directed path
tree T of G, the subpath T(u,v) is a directed path.

Proof. Suppose there is a special connection of type 1 between u and v. Let
w be a vertex adjacent to both u and v. Then w is in a maximal clique with u
and in a maximal clique with v. As Tw is connected, we have T(u,v)⊆Tw. The
subpath Tw is directed by definition of clique directed path tree and so T(u,v) is a
directed path.

We can now assume that there is a special connection of type 2, 3 or 4 between u
and v. Let a, b, c, d be the four vertices as in the definitions of special connections of
type 2 and 3. For special connection of type 4, let a= z0, b= z1, c= z2t+1 and d= z2t+2.
Thus, there are two chordless path u-b-c-v and u-a-d-v.

Let Qu and Qv be the two extremities of T(u,v) with u∈Qu and v∈Qv. The separator
S of the edge of T(u,v) incident to Qu contains at least one vertex of {b,c}, otherwise
u and v are in two different components of G\S, contradicting the fact that u-b-c-v
is a path. Vertex u is not adjacent to c, so c /∈Qu. Then c /∈S and so b∈S. Thus,
Qu∩{b,c}={b}. Similarly, we obtainQu∩{a,b,c,d}={a,b} andQv∩{a,b,c,d}={c,d}.

When T[Q,Q′] is a directed path of T of length one or more, directed from Q to Q′,
we write Q�Q′

Suppose the connection is of type 2. Let Qb be a maximal clique containing
{a,b,c} and Qd a maximal clique containing {a,c,d}. As b and d are not adjacent,
we have Qb∩{a,b,c,d}={a,b,c} and Qd∩{a,b,c,d}={a,c,d}. Thus, Qu, Qv, Qb, Qd
are distinct. As c /∈Qu, we have Qu /∈T[Qb,Qd]. As b /∈Qd, we have Qd /∈T[Qu,Qb].
So Qu, Qb and Qd appear in this order along Ta. Similarly, Qb, Qd and Qv appear
in this order along Tc. Suppose, by symmetry, that Ta is directed from Qu to Qd , i.e.
Qu�Qb�Qd. As Qb�Qd and Tc is directed, we have Qd�Qv and thus T(u,v) is a
directed path.

Suppose the connection is of type 3. Let Q be a maximal clique containing {a,b,c,d}.
Let Qx be a maximal clique containing {a,b,c,x}. LetQy be a maximal clique containing
{b,c,d,y}. As x is not adjacent to d we have Qx∩{a,b,c,d}={a,b,c}. As y is not
adjacent to a we have Qx∩{a,b,c,d}={b,c,d}. Thus Qu, Qv, Qx, Qy, Q are all distinct.

Journal of Graph Theory DOI 10.1002/jgt
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As d /∈Qx, we have Qx /∈T[Q,Qy]. As a /∈Qy, we have Qy /∈T[Q,Qx]. So Qx, Q and Qy

appear in this order along Tb. As c /∈Qu, we have Qu /∈T[Qx,Qy]. As a /∈Qy, we have
Qy /∈T[Qx,Q]. So Qu, Qx, Q and Qy appear in this order along Tb. Similarly, Qx, Q,
Qy and Qv appear in this order along Tc. Suppose, by symmetry, that Tb is directed
from Qu to Qy, i.e. Qu�Qx�Qy. As Qx�Qy and Tc is directed, we have Qy�Qv
and thus T(u,v) is a directed path.

Suppose the connection is of type 4. Recall that a= z0, b= z1, c= z2t+1 and d= z2t+2.
Let Q be a maximal clique containing the clique z0, . . . ,z2t+2. For 1≤k≤2t, let Qk be
a maximal clique containing z′k, zk and zk+1. Let Q0=Qu and Q2t+1=Qv. For every
k, with 0≤k≤2t, as zk+2 /∈Qk, we have Qk+1 /∈T[Qk,Q] and as zk /∈Qk+1, we have
Qk /∈T[Qk+1,Q], so vertices Qk, Q and Qk+1 appear in this order along Tzk+1 . We can
assume, by symmetry, that Tz1 is directed from Q0 to Q1, i.e. Q0�Q�Q1. As Q�Q1
and Tz2 is directed, we have Q2�Q. And so on, for 2≤k≤2t+1, the subpath Tzk is
directed, so Q�Qk when k is odd and Qk�Q when k is even. So Qu=Q0�Q�
Q2t+1=Qv and thus T(u,v) is a directed path. �

4. ASTEROIDAL TRIPLES IN DIRECTED PATH GRAPHS

The graph of Figure 1 is a directed path graph that is minimally not an interval graph.
So, directed path graphs may contain asteroidal triples. But one can define a particular
type of asteroidal triple that is forbidden in directed path graphs. Recall from Section 1
that a special asteroidal triple in a graph G is an asteroidal triple such that each pair
of vertices of the triple is linked by a special connection in G. The graph of Figure 4
is an example of a graph that minimally contains a special asteroidal triple. This graph
is a path graph which is minimally not a directed path graph. (It is the graph F12(6) of
Fig. 2.)

The graph of Figure 5 is another example of a graph that minimally contains a
special asteroidal triple. This graph is interesting as it shows that sometimes the path
between two vertices of the asteroidal triple that avoids the neighborhood of the third
must contain some vertices outside the special connection. The only special connection
linking vertices 2 and 3 is {a,b,c,d} (a special connection of type 2) and the only
path between 2 and 3 that avoids the neighborhood of 1 is 2-b-e-d-3. This graph

FIGURE 4. A path graph which is minimally not a directed path graph.
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FIGURE 5. A chordal graph which is minimally not a path graph.

FIGURE 6. A directed path graph which is minimally not an interval graph.

is a chordal graph which is minimally not a path graph. (It is the graph F8(8) of
Figure 2.)

The graph of Figure 6 is an example of a graph that contains an asteroidal triple that
is not special. This graph is a directed path graph which is minimally not an interval
graph.

We will now prove Theorem 3 which gives a characterization of directed path graphs
by forbidden asteroids.

Proof of Theorem 3. (	⇒) Suppose that G is a directed path graph and z1,z2,z3 is
a special asteroidal triple of G. Let T be a clique directed path tree of G. By Lemma 1,
T(z1,z2,z3) has exactly 3 leaves Qi∈Q, 1≤ i≤3, and further, Qi∩{z1,z2,z3}={zi}. By
Lemma 2, T(z1,z2), T(z2,z3), T(z3,z1) are directed paths of T(z1,z2,z3). Suppose, by
symmetry, that T(z1,z2) is directed from Q1 to Q2. Then T(z1,z3) is directed from Q1
to Q3, but then T(z2,z3) is not a directed path, a contradiction.

(⇐	) All chordal graphs of Figure 2 contain a special asteroidal triple; the three
vertices forming the asteroidal triple are circled. The graphs F1, F2, F3 and F4(n)n≥7
are obtained from a graph containing an asteroidal triple by adding a universal vertex;
this universal vertex forms a special connection of type 1 linking each pair of vertices
of the asteroidal triple. In the graphs F5, F6, F7 and F8(n)n≥8, the special connections
are of type 1 or 2. In the graphs F9(4k+1)k≥2, F10(4k+2)k≥2, F11(4k+3)k≥2 and
F12(4k+2)k≥1, the special connections are of type 1, 2, 3 or 4. So if G is a chordal
graph containing no special asteroidal triple, it does not contain F1, . . . ,F12, and so it
is a directed path graph by Theorem 2. �

Journal of Graph Theory DOI 10.1002/jgt
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TABLE I. References to results and open problems.

Forbidden subgraphs Forbidden asteroids

Path graphs [11] ?
Directed path graphs [15] Theorem 3
Rooted path graphs ? ?
Interval graphs [10] [10]

In the proof of Theorem 3, we use the list of forbidden subgraphs obtained by Panda
[15]. It would be nice to find a simple proof of this result, similar to the proof of
Theorem 1 presented in [9].

A corollary of Theorems 2 and 3 is the following.

Corollary 1. The chordal graphs that minimally contain a special asteroidal triple
are the graphs F1, F2, F3, F4(n)n≥7, F5, F6, F7, F8(n)n≥8, F9(4k+1)k≥2, F10(4k+2)k≥2,
F11(4k+3)k≥2 and F12(4k+2)k≥1.

5. CONCLUSION

We have defined a particular type of asteroidal triple to obtain a characterization of
directed path graphs by forbidden asteroids. One can also try to prove a similar result
for path graphs. Path graphs are a superclass of directed path graphs that may contain
some special asteroidal triples (as path graphs can contain F12(4k+2)k≥1). Can one
define a particular type of special asteroidal triple that will give a characterization of
path graphs by forbidden asteroids?

A rooted tree is a directed tree in which the path from a particular vertex r to every
other vertex is a directed path; vertex r is called the root. A graph is a rooted path
graph if it is the intersection graph of a family of directed subpaths of a rooted tree.
The problem of finding a characterization of rooted path graphs by forbidden subgraphs
is still open. In the extended abstract [3], we gave a more general definition of special
connection (where types 2, 3 and 4 can be longer) to study both directed path graphs
and rooted path graphs at the same time. Here we give a simplier definition of special
connection to simplify the characterization theorem for directed path graphs.

References to results and open problems are summarized in Table I.
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