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Abstract

An s-graph is a graph with two kind of edges: subdivisible edges and real edges.
A realisation of an s-graph B is any graph obtained by subdividing subdivisible
edges of B into paths of length at least one. Given an s-graph B, we study the
decision problem ΠB. Its instance is any graph G, its question is “Does G contains
a realisation of B as an induced subgraph ?”. For several B’s, the complexity is
known and here we give the complexity for several more. We also provide results
on the problem of detecting an induced cycle through two prescribed vertices.
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Fig. 1. S-graphs yielding trivially polynomial problems
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Fig. 2. Pyramids, prisms and thetas

1 Introduction

In this paper graphs are simple and finite. A subdivisible graph (s-graph for
short) is a triple B = (V, D, F ) such that B′ = (V, D ∪ F ) is a graph and
D ∩ F = ∅. The edges in D are said to be real edges of B while the edges
in F are said to be subdivisible edges of B. A realisation of B is a graph
obtained from B by subdivising edges of F into paths of length at least one.
The problem ΠB is the decision problem whose input is a graph G and whose
question is ”Does G contain a realisation of B as an induced subgraph ?”. On
figures, we depict real edges of an s-graph with straight lines, and subdivisible
edges with dashed lines.

Several ΠB problems of interest are studied in the litterature. For some of
them, the existence of a polynomial time algorithm is trivial, but efforts are
devoted toward optimized algorithms. For example, Alon, Yuster and Zwick
solve ΠT in time O(m1.41) (instead of the obvious O(n3) algorithm), where
T is the s-graph depicted on Figure 1. This problem is known as triangle

detection. Tarjan and Yannakakis [9] solve PH in time O(n + m) where H is
the s-graph depicted on Figure 1.
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Fig. 3. Some s-graphs with pending edges

Fig. 4. I1

But for some ΠB’s, the existence of a polynomial time algorithm is non-
trivial. A pyramid (resp. prism, theta) is any graph that is a realisation of the
s-graph B1 (resp. B2, B3) depicted on figure 2. Chudnovsky and Seymour [5]
gave an O(n9)-time algorithm for ΠB1

(or equivalently, for detecting a pyra-
mid). As far as we know, that is the first example of a solution to a ΠB whose
complexity is non-trivial to settle. In contrast, Maffray and Trotignon [7]
proved that ΠB2

(or detecting a prism) is NP-complete. Chudnovsky and Sey-
mour [4] gave an O(n11)-time algorithm for PB3

(or detecting a theta). Their
algorithm relies on the solution of a problem called “three-in-a-tree”. Note
that the algorithm for three-in-tree is quite general since it can be used to
solve a lot of ΠB problems, including the detection of pyramids.

These facts are a motivation for a systematic study of ΠB. A further moti-
vation is that very similar s-graphs can lead to a drasticly different complexity.
The following example is maybe more striking than pyramid/prism/theta :
ΠB4

, ΠB6
are polynomial and ΠB5

, ΠB7
are NP-complete, where B4, . . . , B7 are

the s-graphs depicted on figure 3.

Notation

By Ck (k ≥ 3) we denote the cycle on k vertices, by Kl (l ≥ 1) the clique on
l vertices. By Il (l ≥ 1) we denote the tree on l + 5 vertices that we obtain
by taking a path of length l with end a, b, and by adding four vertices, two
of them adjacent to a, the two others two b, see Figure 4. When a graph G
contains a graph isomorphic to H as an induced subgraph, we will often say
“G contain an H”.
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2 Detection of holes with prescribed vertices

Let Δ(G) be the maximum degree of G. Let I be a set of graphs and k be an
integer. Let Γk

I be the problem whose instance is (G, x, y) where G is a graph
such that Δ(G) ≤ k, with no induced subgraph in I and x, y ∈ V (G) are
two non-adjacent vertices of degree 2. The question is ”Does G contain a hole
passing through x, y ?”. For simplicity, we write ΓI instead of Γ+∞

I (so, the
graph in the instance of ΓI has unbounded degree). Also we write Γk instead
of Γk

∅ (so the graph in the instance of Γk has no restriction on its induced
subgraphs). Bienstock [3] proved that Γ = Γ∅ is NP-complete. For I = {K3}
and I = {K1,4}, ΓI can be shown to be NP-complete, and a consequence is
the NP-completeness of several problems of interest: see [7] and [8].

We try to settle Γk
I for as many I’s and k’s as we can because we need

this in the proofs of the results in the next section. In particular, we give the
complexity of ΓI when I contains only one connected graph and of Γk for all
k. We also settle Γk

I for some cases when I is a set of cycles. The polynomial
cases are either trivial, or are a direct consequence of the algorithm three-in-
a-tree of Chudnovsky and Seymour that we have already mentionned. The
NP-complete cases follow from several extensions of Bienstock’s construction.

Theorem 2.1 Let H be a connected graph. Then either :

• H is a path or a subdivision of a claw and Γ{H} is polynomial.

• H contains one of K1,4, Ik for some k ≥ 1, or Cl for some l ≥ 3 as an

induced subgraph and Γ{H} is NP-complete.

Interestingly, a similar theorem has been proved by Alekseev:

Theorem 2.2 (Alekseev, [1]) Let H be a connected graph that is not a path

nor a subdivided claw. Then the problem of finding a maximum stable set in

H-free graphs is NP-hard.

But the complexity of the maximum stable set problem is not known in
general for H-free graphs when H is a path or a subdivided claw. See [6] for
a survey.

Theorem 2.3 The following statements hold.

• For any k ∈ Z with k ≥ 2, the problem Γk is NP-complete when k ≥ 3 and

polynomial when k = 2.

• If H is any finite list of cycles Ck1
, Ck2

, . . . , Ckm
such that C6 /∈ H, then Γ3

H

is NP-complete.
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3 ΠB for some special s-graphs

The s-graphs B4, . . . , B7 are depicted on Figure 3.

Theorem 3.1 There is an O(n13)-time algorithm for ΠB4
, an O(n14)-time

algorithm for ΠB6
, but ΠB5

, ΠB7
are NP-complete.

We put : sK5 = ({a, b, c, d, e}, ∅,
(
{a,b,c,d,e}

2

)
). So sK5 is the s-graph on

five vertices with all its edges subdivisible. The following theorem is the only
NP-hardness result known for an s-graph with no real edges.

Theorem 3.2 ΠsK5
is NP-complete.
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Recognizing Berge graphs. Combinatorica, 25:143–186, 2005.

[6] A. Hertz and V. V. Lozin. The maximum independent set problem and
augmenting graphs. Manuscript.

[7] F. Maffray and N. Trotignon. Algorithms for perfectly contractile graphs.
SIAM Jour. of Discrete Math., 19(3):553–574, 2005.
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