Detecting induced subgraphs

Benjamin Lévêque ${ }^{\text {a }}$, David Y. Lin ${ }^{\text {b }}$, Frédéric Maffray ${ }^{\text {a }}$, Nicolas Trotignon ${ }^{\text {c,* }}$
${ }^{\text {a }}$ CNRS, Laboratoire G-SCOP, 46 Avenue Félix Viallet, 38031 Grenoble Cedex, France
${ }^{\text {b }}$ Princeton University, Princeton, NJ, 08544, United States
${ }^{\text {c }}$ CNRS, Université Paris 7, Paris Diderot, LIAFA, Case 7014, 75205 Paris Cedex 13, France

ARTICLE INFO

Article history:

Received 14 November 2007
Received in revised form 5 February 2009
Accepted 18 February 2009
Available online 24 March 2009

Keywords:

Detecting
Induced
Subgraphs

Abstract

An s-graph is a graph with two kinds of edges: subdivisible edges and real edges. A realisation of an s-graph B is any graph obtained by subdividing subdivisible edges of B into paths of arbitrary length (at least one). Given an s-graph B, we study the decision problem Π_{B} whose instance is a graph G and question is "Does G contain a realisation of B as an induced subgraph?". For several B 's, the complexity of Π_{B} is known and here we give the complexity for several more.

Our NP-completeness proofs for Π_{B} 's rely on the NP-completeness proof of the following problem. Let s be a set of graphs and d be an integer. Let Γ_{8}^{d} be the problem whose instance is (G, x, y) where G is a graph whose maximum degree is at most d, with no induced subgraph in $\&$ and $x, y \in V(G)$ are two non-adjacent vertices of degree 2 . The question is "Does G contain an induced cycle passing through x, y ?". Among several results, we prove that Γ_{\emptyset}^{3} is NP-complete. We give a simple criterion on a connected graph H to decide whether $\Gamma_{\{H\}}^{+\infty}$ is polynomial or NP-complete. The polynomial cases rely on the algorithm three-in-a-tree, due to Chudnovsky and Seymour.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper graphs are simple and finite. A subdivisible graph (s-graph for short) is a triple $B=(V, D, F)$ such that $(V, D \cup F)$ is a graph and $D \cap F=\emptyset$. The edges in D are said to be real edges of B while the edges in F are said to be subdivisible edges of B. A realisation of B is a graph obtained from B by subdividing edges of F into paths of arbitrary length (at least one). The problem Π_{B} is the decision problem whose input is a graph G and whose question is "Does G contain a realisation of B as an induced subgraph?". On figures, we depict real edges of an s-graph with straight lines, and subdivisible edges with dashed lines.

Several interesting instances of Π_{B} are studied in the literature. For some of them, the existence of a polynomial time algorithm is trivial, but efforts are devoted toward optimized algorithms. For example, Alon, Yuster and Zwick [2] solve Π_{T} in time $O\left(m^{1.41}\right)$ (instead of the obvious $O\left(n^{3}\right)$ algorithm), where T is the s-graph depicted on Fig. 1 . This problem is known as triangle detection. Rose, Tarjan and Lueker [10] solve Π_{H} in time $O(n+m)$ where H is the s-graph depicted on Fig. 1 .

For some Π_{B} 's, the existence of a polynomial time algorithm is non-trivial. A pyramid (resp. prism, theta) is any realisation of the s-graph B_{1} (resp. B_{2}, B_{3}) depicted on Fig. 2. Chudnovsky and Seymour [4] gave an $O\left(n^{9}\right)$-time algorithm for $\Pi_{B_{1}}$ (or equivalently, for detecting a pyramid). As far as we know, that is the first example of a solution to a Π_{B} whose complexity is non-trivial to settle. In contrast, Maffray and Trotignon [8] proved that $\Pi_{B_{2}}$ (or detecting a prism) is NP-complete.

[^0]

Fig. 1. s-graphs yielding trivially polynomial problems.

Fig. 2. Pyramids, prisms and thetas.

Fig. 3. Some s-graphs with pending edges.

Fig. 4. I_{1}
Chudnovsky and Seymour [5] gave an $O\left(n^{11}\right)$-time algorithm for $P_{B_{3}}$ (or detecting a theta). Their algorithm relies on the solution of a problem called "three-in-a-tree", that we will define precisely and use in Section 2. The three-in-tree algorithm is quite general since it can be used to solve a lot of Π_{B} problems, including the detection of pyramids.

These facts are a motivation for a systematic study of Π_{B}. A further motivation is that very similar s-graphs can lead to a drastically different complexity. The following example may be more striking than pyramid/prism/theta: $\Pi_{B_{4}}, \Pi_{B_{6}}$ are polynomial and $\Pi_{B_{5}}, \Pi_{B_{7}}$ are NP-complete, where B_{4}, \ldots, B_{7} are the s-graphs depicted on Fig. 3. This will be proved in Section 3.1.

1.1. Notation and remarks

By $C_{k}(k \geq 3)$ we denote the cycle on k vertices, by $K_{l}(l \geq 1)$ the clique on l vertices. A hole in a graph is an induced cycle on at least four vertices. We denote by $I_{l}(l \geq 1)$ the tree on $l+5$ vertices obtained by taking a path of length l with ends a, b, and adding four vertices, two of them adjacent to a, the other two to b; see Fig. 4 . When a graph G contains a graph isomorphic to H as an induced subgraph, we will often say " G contains an H ".

Let (V, D, F) be an s-graph. Suppose that $(V, D \cup F)$ has a vertex of degree one incident to an edge e. Then $\Pi_{(V, D \cup\{e\}, F \backslash\{e\})}$ and $\Pi_{(V, D \backslash\{e\}, F \cup\{e\})}$ have the same complexity, because a graph G contains a realisation of $(V, D \cup\{e\}, F \backslash\{e\})$ if and only if it contains a realisation of $(V, D \backslash\{e\}, F \cup\{e\})$. For the same reason, if $(V, D \cup F)$ has a vertex of degree two incident to the edges $e \neq f$ then $\Pi_{(V, D \backslash\{e\} \cup\{f\}, F \backslash\{f\} \cup\{e\})}, \Pi_{(V, D \backslash\{f\} \cup\{e\}, F \backslash\{e\} \cup\{f\})}$ and $\Pi_{(V, D \backslash\{e, f\}, F \cup\{e, f\})}$ have the same complexity. If $|F| \leq 1$ then $\Pi_{(V, D, F)}$ is clearly polynomial. Thus, in the rest of the paper, we will consider only s-graphs (V, D, F) such that:

- $|F| \geq 2$;
- no vertex of degree one is incident to an edge of F;
- every induced path of $(V, D \cup F)$ with all interior vertices of degree 2 and whose ends have degree $\neq 2$ has at most one edge in F. Moreover, this edge is incident to an end of the path;
- every induced cycle with at most one vertex v of degree at least 3 in $(V, D \cup F)$ has at most one edge in F and this edge is incident to v if v exists (if it does not then the cycle is a component of $(V, D \cup F)$).

2. Detection of holes with prescribed vertices

Let $\Delta(G)$ be the maximum degree of G. Let s be a set of graphs and d be an integer. Let Γ_{8}^{d} be the problem whose instance is (G, x, y) where G is a graph such that $\Delta(G) \leq d$, with no induced subgraph in δ and $x, y \in V(G)$ are two non-adjacent vertices of degree 2 . The question is "Does G contain a hole passing through x, y ?". For simplicity, we write Γ_{f} instead of
$\Gamma_{\delta}^{+\infty}$ (so, the graph in the instance of Γ_{δ} has unbounded degree). Also we write Γ^{d} instead of Γ_{\emptyset}^{d} (so the graph in the instance of Γ^{d} has no restriction on its induced subgraphs). Bienstock [3] proved that $\Gamma=\Gamma_{\emptyset}$ is NP-complete. For $\&=\left\{K_{3}\right\}$ and $\delta=\left\{K_{1,4}\right\}, \Gamma_{\&}$ can be shown to be NP-complete, and a consequence is the NP-completeness of several problems of interest: see [8,9].

In this section, we try to settle Γ_{δ}^{d} for as many δ 's and d's as we can. In particular, we give the complexity of Γ_{δ} when s contains only one connected graph and of Γ^{d} for all d. We also settle Γ_{s}^{d} for some cases when s is a set of cycles. The polynomial cases are either trivial, or are a direct consequence of an algorithm of Chudnovsky and Seymour. The NPcomplete cases follow from several extensions of Bienstock's construction.

2.1. Polynomial cases

Chudnovsky and Seymour [5] proved that the problem whose instance is a graph G together with three vertices a, b, c and whose question is "Does G contain a tree passing through a, b, c as an induced subgraph?" can be solved in time $O\left(n^{4}\right)$. We call this algorithm "three-in-a-tree". Three-in-a-tree can be used directly to solve Γ_{f} for several 8 's. Let us call subdivided claw any tree with one vertex u of degree 3 , three vertices v_{1}, v_{2}, v_{3} of degree 1 and all the other vertices of degree 2 .

Theorem 2.1. Let H be a graph on k vertices that is either a path or a subdivided claw. There is an $O\left(n^{k}\right)$-time algorithm for $\Gamma_{\{H\}}$.
Proof. Here is an algorithm for $\Gamma_{\{H\}}$. Let (G, x, y) be an instance of Γ_{H}. If H is a path on k vertices then every hole in G is on at most k vertices. Hence, by a brute-force search on every k-tuple, we will find a hole through x, y if there is any. Now we suppose that H is a subdivided claw. So $k \geq 4$. For convenience, we put $x_{1}=x, y_{1}=y$. Let x_{0}, x_{2} (resp. y_{0}, y_{2}) be the two neighbours of x_{1} (resp. y_{1}).

First check whether there is in G a hole C through x_{1}, y_{1} such that the distance between x_{1} and y_{1} in C is at most $k-2$. If $k=4$ or $k=5$ then $\left\{x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}\right\}$ either induces a hole (that we output) or a path P that is contained in every hole through x, y. In this last case, the existence of a hole through x, y can be decided in linear time by deleting the interior of P, deleting the neighbours in $G \backslash P$ of the interior vertices of P and by checking the connectivity of the resulting graph. Now suppose $k \geq 6$. For every l-tuple $\left(x_{3}, \ldots, x_{l+2}\right)$ of vertices of G, with $l \leq k-5$, test whether $P=x_{0}-x_{1}-\cdots-x_{l+2}-y_{2}-y_{1}-y_{0}$ is an induced path, and if so delete the interior vertices of P and their neighbours except x_{0}, y_{0}, and look for a shortest path from x_{0} to y_{0}. This will find the desired hole if there is one, after possibly swapping x_{0}, x_{2} and doing the work again. This takes time $O\left(n^{k-3}\right)$.

Now we may assume that in every hole through x_{1}, y_{1}, the distance between x_{1}, y_{1} is at least $k-1$.
Let k_{i} be the length of the unique path of H from u to $v_{i}, i=1,2,3$. Note that $k=k_{1}+k_{2}+k_{3}+1$. Let us check every $(k-4)$-tuple $z=\left(x_{3}, \ldots, x_{k_{1}+1}, y_{3}, \ldots, y_{k_{2}+k_{3}}\right)$ of vertices of G. For such a $(k-4)$-tuple, test whether $x_{0}-x_{1}-\cdots-x_{k_{1}+1}$ and $P=y_{0}-y_{1}-\cdots-y_{k_{2}+k_{3}}$ are induced paths of G with no edge between them except possibly $x_{k_{1}+1} y_{k_{2}+k_{3}}$. If not, go to the next $(k-4)$-tuple, but if yes, delete the interior vertices of P and their neighbours except $y_{0}, y_{k_{2}+k_{3}}$. Also delete the neighbours of $x_{2}, \ldots, x_{k_{1}}$, except $x_{1}, x_{2}, \ldots, x_{k_{1}}, x_{k_{1}+1}$. Call G_{z} the resulting graph and run three-in-a-tree in G_{z} for the vertices $x_{1}, y_{k_{2}+k_{3}}, y_{0}$. We claim that the answer to three-in-a-tree is YES for some ($k-4$)-tuple if and only if G contains a hole through x_{1}, y_{1} (after possibly swapping x_{0}, x_{2} and doing the work again).

To prove this, first assume that G contains a hole C through x_{1}, y_{1} then up to a symmetry this hole visits $x_{0}, x_{1}, x_{2}, y_{2}, y_{1}, y_{0}$ in this order. Let us name $x_{3}, \ldots, x_{k_{1}+1}$ the vertices of C that follow after x_{1}, x_{2} (in this order), and let us name $y_{3}, \ldots, y_{k_{2}+k_{3}}$ those that follow after y_{1}, y_{2} (in reverse order). Note that all these vertices exist and are pairwise distinct since in every hole through x_{1}, y_{1} the distance between x_{1}, y_{1} is at least $k-1$. So the path from y_{0} to $y_{k_{2}+k_{3}}$ in $C \backslash y_{1}$ is a tree of G_{z} passing through $x_{1}, y_{k_{2}+k_{3}}, y_{0}$, where z is the $(k-4)$-tuple ($x_{3}, \ldots, x_{k_{1}+1}, y_{3}, \ldots, y_{k_{2}+k_{3}}$).

Conversely, suppose that G_{z} contains a tree T passing through $x_{1}, y_{k_{2}+k_{3}}, y_{0}$, for some ($k-4$)-tuple z. We suppose that T is vertex-inclusion-wise minimal. If T is a path visiting $y_{0}, x_{1}, y_{k_{2}+k_{3}}$ in this order, then we obtain the desired hole of G by adding $y_{1}, y_{2}, \ldots, y_{k_{2}+k_{3}-1}$ to T. If T is a path visiting $x_{1}, y_{0}, y_{k_{2}+k_{3}}$ in this order, then we denote by $y_{k_{2}+k_{3}+1}$ the neighbour of $y_{k_{2}+k_{3}}$ along T. Note that T contains either x_{0} or x_{2}. If T contains x_{0}, then there are three paths in $G: y_{0}-T-x_{0}-x_{1}-\cdots-x_{k_{1}}$, $y_{0}-T-y_{k_{2}+k_{3}+1}-\cdots-y_{k_{3}+2}$ and $y_{0}-y_{1}-\cdots-y_{k_{3}}$. These three paths form a subdivided claw centered at y_{0} that is long enough to contain an induced subgraph isomorphic to H, a contradiction. If T contains x_{2} then the proof works similarly with $y_{0}-T-x_{k_{1}+1}-x_{k_{1}}-\cdots-x_{1}$ instead of $y_{0}-T-x_{0}-x_{1}-\cdots-x_{k_{1}}$. If T is a path visiting $x_{1}, y_{k_{2}+k_{3}}, y_{0}$ in this order, the proof is similar, except that we find a subdivided claw centered at $y_{k_{2}+k_{3}}$. If T is not a path, then it is a subdivided claw centered at a vertex u of G. We obtain again an induced subgraph of G isomorphic to H by adding to T sufficiently many vertices of $\left\{x_{0}, \ldots, x_{k_{1}+1}, y_{0}, \ldots, y_{k_{2}+k_{3}}\right\}$.

2.2. NP-complete cases (unbounded degree)

Many NP-completeness results can be proved by adapting Bienstock's construction. We give here several polynomial reductions from the problem 3-Satisfiability of Boolean functions. These results are given in a framework that involves a few parameters, so that our result can possibly be used for different problems of the same type. Recall that a Boolean function with n variables is a mapping f from $\{0,1\}^{n}$ to $\{0,1\}$. A Boolean vector $\xi \in\{0,1\}^{n}$ is a truth assignment satisfying f if $f(\xi)=1$. For any Boolean variable z on $\{0,1\}$, we write $\bar{z}:=1-z$, and each of z, \bar{z} is called a literal. An instance of

Fig. 5. The graph $G\left(z_{i}\right)$ (only blue edges are depicted).
3-SATISFIABILITY is a Boolean function f given as a product of clauses, each clause being the Boolean sum \vee of three literals; the question is whether f is satisfied by a truth assignment. The NP-completeness of 3-Satisfiability is a fundamental result in complexity theory, see [6].

Let f be an instance of 3-Satisfiability, consisting of m clauses C_{1}, \ldots, C_{m} on n variables z_{1}, \ldots, z_{n}. For every integer $k \geq 3$ and parameters $\alpha \in\{1,2\}, \beta \in\{0,1\}, \gamma \in\{0,1\}, \delta \in\{0,1,2,3\}, \varepsilon \in\{0,1\}, \zeta \in\{0,1\}$ such that if $\alpha=2$ then $\varepsilon=\beta=\gamma$, let us build a graph $G_{f}(k, \alpha, \beta, \gamma, \delta, \varepsilon, \zeta)$ with two specified vertices x, y of degree 2 . There will be a hole containing x and y in $G_{f}(k, \alpha, \beta, \gamma, \delta, \varepsilon, \zeta)$ if and only if there exists a truth assignment satisfying f. In $G_{f}(k, \alpha, \beta, \gamma, \delta, \varepsilon, \zeta)$ (we will sometimes write G_{f} for short), there will be two kinds of edges: blue and red. The reason for this distinction will appear later. Let us now describe G_{f}.

2.2.1. Pieces of G_{f} arising from variables

For each variable $z_{i}(i=1, \ldots, n)$, prepare a graph $G\left(z_{i}\right)$ with $4 k$ vertices $a_{i, r}, b_{i, r}, a_{i, r}^{\prime}, b_{i, r}^{\prime}, r \in\{1, \ldots, k\}$ and $4(m+2) 2 k$ vertices $t_{i, 2 p k+r}, f_{i, 2 p k+r}, t_{i, 2 p k+r}^{\prime}, f_{i, 2 p k+r}^{\prime}, p \in\{0, \ldots, m+1\}, r \in\{0, \ldots, 2 k-1\}$. Add blue edges so that the four sets $\left\{a_{i, 1}, \ldots a_{i, k}, t_{i, 0}, \ldots, t_{i, 2 k(m+2)-1}, b_{i, 1}, \ldots, b_{i, k}\right\},\left\{a_{i, 1}, \ldots a_{i, k}, f_{i, 0}, \ldots, f_{i, 2 k(m+2)-1}, b_{i, 1}, \ldots, b_{i, k}\right\}$, $\left\{a_{i, 1}^{\prime}, \ldots a_{i, k}^{\prime}, t_{i, 0}^{\prime}, \ldots, t_{i, 2 k(m+2)-1}^{\prime}, b_{i, 1}^{\prime}, \ldots, b_{i, k}^{\prime}\right\},\left\{a_{i, 1}^{\prime}, \ldots a_{i, k}^{\prime}, f_{i, 0}^{\prime}, \ldots, f_{i, 2 k(m+2)-1}^{\prime}, b_{i, 1}^{\prime}, \ldots, b_{i, k}^{\prime}\right\}$ all induce paths (and the vertices appear in this order along these paths). See Fig. 5.
Add red edges according to the value of α, β, γ, as follows:

- If $\alpha=1$ then, for every $p=1, \ldots, m+1$, add all edges between $\left\{t_{i, 2 k p}, t_{i, 2 k p+\beta}\right\}$ and $\left\{f_{i, 2 k p}, f_{i, 2 k p+\gamma}\right\}$, between $\left\{f_{i, 2 k p}, f_{i, 2 k p+\gamma}\right\}$ and $\left\{t_{i, 2 k p}^{\prime}, t_{i, 2 k p+\beta}^{\prime}\right\}$, between $\left\{t_{i, 2 k p}^{\prime}, t_{i, 2 k p+\beta}^{\prime}\right\}$ and $\left\{f_{i, 2 k p}^{\prime}, f_{i, 2 k p+\gamma}^{\prime}\right\}$, between $\left\{f_{i, 2 k p}^{\prime}, f_{i, 2 k p+\gamma}^{\prime}\right\}$ and $\left\{t_{i, 2 k p}, t_{i, 2 k p+\beta}\right\}$.
- If $\alpha=2$ then, for every $p=1, \ldots, m$, add all edges between $\left\{t_{i, 2 k p+k-1}, t_{i, 2 k p+k-1+\beta}\right\}$ and $\left\{f_{i, 2 k p+k-1}, f_{i, 2 k p+k-1+\gamma}\right\}$; for every $p=1, \ldots, m+1$, add all edges between $\left\{f_{i, 2 k p+k-1}, f_{i, 2 k p+k-1+\gamma}\right\}$ and $\left\{t_{i, 2 k p}^{\prime}, t_{i, 2 k p+\beta}^{\prime}\right\}$, between $\left\{t_{i, 2 k p}^{\prime}, t_{i, 2 k p+\beta}^{\prime}\right\}$ and $\left\{f_{i, 2 k p}^{\prime}, f_{i, 2 k p+\gamma}^{\prime}\right\}$, between $\left\{f_{i, 2 k p}^{\prime}, f_{i, 2 k p+\gamma}^{\prime}\right\}$ and $\left\{t_{i, 2 k(p-1)+k-1}, t_{i, 2 k(p-1)+k-1+\beta}\right\}$.
See Figs. 6 and 7.

2.2.2. Pieces of G_{f} arising from clauses

For each clause $C_{j}(j=1, \ldots, m)$, with $C_{j}=y_{j}^{1} \vee y_{j}^{2} \vee y_{j}^{3}$, where each $y_{j}^{q}(q=1,2,3)$ is a literal from $\left\{z_{1}, \ldots, z_{n}, \bar{z}_{1}, \ldots, \bar{z}_{n}\right\}$, prepare a graph $G\left(C_{j}\right)$ with $2 k$ vertices $c_{j, p}, d_{j, p}, p \in\{1, \ldots, k\}$ and $6 k$ vertices $u_{j, p}^{q}, q \in\{1,2,3\}$, $p \in\{1, \ldots, 2 k\}$. Add blue edges so that the three sets $\left\{c_{j, 1}, \ldots, c_{j, k}, u_{j, 1}^{q}, \ldots, u_{j, 2 k}^{q}, d_{j, 1}, \ldots d_{j, k}\right\}, q \in\{1,2,3\}$ all induce paths (and the vertices appear in this order along these paths).
Add red edges according to the value of δ :

- If $\delta=0$, add no edge.
- If $\delta=1$, add $u_{j, 1}^{1} u_{j, 1}^{2}, u_{j, 2 k}^{1} u_{j, 2 k}^{2}$.
- If $\delta=2$, add $u_{j, 1}^{1} u_{j, 1}^{2}, u_{j, 2 k}^{1} u_{j, 2 k}^{2}, u_{j, 1}^{1} u_{j, 1}^{3}, u_{j, 2 k}^{1} u_{j, 2 k}^{3}$.
- If $\delta=3$, add $u_{j, 1}^{1} u_{j, 1}^{2}, u_{j, 2 k}^{1} u_{j, 2 k}^{2}, u_{j, 1}^{1} u_{j, 1}^{3}, u_{j, 2 k}^{1} u_{j, 2 k}^{3}, u_{j, 1}^{2} u_{j, 1}^{3}, u_{j, 2 k}^{2} u_{j, 2 k}^{3}$.

See Fig. 8.

2.2.3. Gluing the pieces of G_{f}

The graph $G_{f}(k, \alpha, \beta, \gamma, \delta, \varepsilon, \zeta)$ is obtained from the disjoint union of the $G\left(z_{i}\right)$'s and the $G\left(C_{j}\right)$'s as follows. For $i=$ $1, \ldots, n-1$, add blue edges $b_{i, k} a_{i+1,1}$ and $b_{i, k}^{\prime} a_{i+1,1}^{\prime}$. Add a blue edge $b_{n, k}^{\prime} c_{1,1}$. For $j=1, \ldots, m-1$, add a blue edge $d_{j, k} c_{j+1,1}$. Introduce the two special vertices x, y and add blue edges $x a_{1,1}, x a_{1,1}^{\prime}$ and $y d_{m, k}, y b_{n, k}$. See Fig. 9.

Add red edges according to f, ε, ζ. For $q=1,2,3$, if $y_{j}^{q}=z_{i}$, then add all possible edges between $\left\{f_{i, 2 k j+k-1}, f_{i, 2 k j+k-1+\varepsilon}\right\}$ and $\left\{u_{j, k}^{q}, u_{j, k+\zeta}^{q}\right\}$ and between $\left\{f_{i, 2 k j+k-1}^{\prime}, f_{i, 2 k j+k-1+\varepsilon}^{\prime}\right\}$ and $\left\{u_{j, k}^{q}, u_{j, k+\zeta}^{q}\right\}$; if $y_{j}^{q}=\bar{z}_{i}$ then add all possible edges between $\left\{t_{i, 2 k j+k-1}, t_{i, 2 k j+k-1+\varepsilon}\right\}$ and $\left\{u_{j, k}^{q}, u_{j, k+\zeta}^{q}\right\}$ and between $\left\{t_{i, 2 k j+k-1}^{\prime}, t_{i, 2 k j+k-1+\varepsilon}^{\prime}\right\}$ and $\left\{u_{j, k}^{q}, u_{j, k+\zeta}^{q}\right\}$. See Fig. 10.

Fig. 6. The graph $G\left(z_{i}\right)$ when $\alpha=1, \beta=0, \gamma=0$.

Fig. 7. The graph $G\left(z_{i}\right)$ when $\alpha=2, \beta=0, \gamma=0$.

Fig. 8. The graph $G\left(C_{j}\right)$ when $\delta=3$.

Fig. 9. The whole graph G_{f}.

Clearly the size of $G_{f}(k, \alpha, \beta, \gamma, \delta, \varepsilon, \zeta)$ is polynomial (actually quadratic) in the size $n+m$ of f, and x, y are non-adjacent and both have degree two.

Lemma 2.2. f is satisfied by a truth assignment if and only if $G_{f}(k, \alpha, \beta, \gamma, \delta, \varepsilon, \zeta)$ contains a hole passing through x, y.
Proof. Recall that if $\alpha=2$ then $\varepsilon=\beta=\gamma$. We will prove the lemma for $\beta=0, \gamma=0, \varepsilon=0, \zeta=0$ because the proof is essentially the same for the other possible values.

Suppose that f is satisfied by a truth assignment $\xi \in\{0,1\}^{n}$. We can build a hole in G by selecting vertices as follows. Select x, y. For $i=1, \ldots, n$, select $a_{i, p}, b_{i, p}, a_{i, p}^{\prime}, b_{i, p}^{\prime}$ for all $p \in\{1, \ldots, k\}$. For $j=1, \ldots, m$, select $c_{j, p}, d_{j, p}$ for all $p \in\{1, \ldots, k\}$. If $\xi_{i}=1$ select $t_{i, p}, t_{i, p}^{\prime}$ for all $p \in\{0, \ldots, 2 k(m+2)-1\}$. If $\xi_{i}=0$ select $f_{i, p}, f_{i, p}^{\prime}$ for all $p \in\{0, \ldots, 2 k(m+2)-1\}$. For $j=1, \ldots, m$, since ξ is a truth assignment satisfying f, at least one of the three literals of C_{j} is equal to 1 , say $y_{j}^{q}=1$ for some $q \in\{1,2,3\}$. Then select $u_{j, p}^{q}$ for all $p \in\{1, \ldots, 2 k\}$. Now it is a routine matter to check that the selected vertices induce a cycle Z that contains x, y, and that Z is chordless, so it is a hole. The main point is that there is no chord in Z between some subgraph $G\left(C_{j}\right)$ and some subgraph $G\left(z_{i}\right)$, for that would be either an edge $t_{i, p} u_{j, r}^{q}$ with $y_{j}^{q}=z_{i}$ and $\xi_{i}=1$, or, symmetrically, an edge $f_{i, p} u_{j, r}^{q}$ with $y_{j}^{q}=\bar{z}_{i}$ and $\xi_{i}=0$, and in either case this would contradict the way the vertices of Z were selected.

Fig. 10. Red edges between $G\left(z_{i}\right)$ and $G\left(C_{j}\right)$ when $\varepsilon=\zeta=0$.

Conversely, suppose that $G_{f}(k, \alpha, \beta, \gamma, \delta, \varepsilon, \zeta)$ admits a hole Z that contains x, y.
(1) For $i=1, \ldots, n, Z$ contains at least $4 k+4 k(m+2)$ vertices of $G\left(z_{i}\right): 4 k$ of these are $a_{i, p}, a_{i, p}^{\prime}, b_{i, p}, b_{i, p}^{\prime}$ where $p \in\{1, \ldots, k\}$, and the others are either the $t_{i, p}, t_{i, p}^{\prime}$'s or the $f_{i, p}, f_{i, p}^{\prime}$'s where $p \in\{0, \ldots, 2 k(m+2)-1\}$.
Let us first deal with the case $i=1$. Since $x \in Z$ has degree $2, Z$ contains $a_{1,1}, \ldots, a_{1, k}$ and $a_{1,1}^{\prime}, \ldots, a_{1, k}^{\prime}$. Hence exactly one of $t_{1,0}, f_{1,0}$ is in Z. Likewise exactly one of $t_{1,0}^{\prime}, f_{1,0}^{\prime}$ is in Z. If $t_{1,0}, f_{1,0}^{\prime}$ are both in Z then there is a contradiction: indeed, if $\alpha=1$ then, $t_{1,0}, \ldots, t_{1,2 k}$ and $f_{1,0}^{\prime}, \ldots, f_{1,2 k}^{\prime}$ must all be in Z, and since $t_{1,2 k}$ sees $f_{1,2 k}^{\prime}, Z$ cannot go through y; and if $\alpha=2$ the proof is similar. Similarly, $t_{1,0}^{\prime}, f_{1,0}$ cannot both be in Z. So, there exists a largest integer $p \leq 2 k(m+2)-1$ such that either $t_{1,0}, \ldots, t_{1, p}$ and $t_{1,0}^{\prime}, \ldots, t_{1, p}^{\prime}$ are all in Z or $f_{1,0}, \ldots, f_{1, p}$ and $f_{1,0}^{\prime}, \ldots, f_{1, p}^{\prime}$ are all in Z.

We claim that $p=2 k(m+2)-1$. For otherwise, some vertex w in $\left\{t_{1, p}, t_{1, p}^{\prime}, f_{1, p}, f_{1, p}^{\prime}\right\}$ is incident to a red edge e of Z. If $\alpha=1$ then, up to a symmetry, we assume that $t_{1,0}, \ldots, t_{1, p}$ and $t_{1,0}^{\prime}, \ldots, t_{1, p}^{\prime}$ are all in Z. Let w^{\prime} be the vertex of e that is not w. Then w^{\prime} (which is either an $f_{1, .,}$, an $f_{1, \cdot}^{\prime}$ or a $u_{j, \text {. }}$) is a neighbour of both $t_{1, p}, t_{1, p}^{\prime}$. Hence, Z cannot go through y, a contradiction. This proves our claim when $\alpha=1$. If $\alpha=2$, we distinguish between the following six cases.
Case 1: $p=k-1$. Then $e=t_{1, k-1} f_{1,2 k}^{\prime}$. Clearly $t_{1,0}, \ldots, t_{1, k-1}$ must all be in Z. If $t_{1,0}^{\prime}, \ldots, t_{1,2 k}^{\prime}$ are in Z, there is a contradiction because of $t_{1,2 k}^{\prime} f_{1,2 k}^{\prime}$, and if $f_{1,0}^{\prime}, \ldots, f_{1,2 k}^{\prime}$ are in Z, there is a contradiction because of e.
Case 2: $p=2 k l$ where $1 \leq l \leq m+1$ and $w=t_{1,2 k l}^{\prime}$. Then e is $t_{1,2 k}^{\prime} f_{1,2 k l+k-1}$ or $t_{1,2 k l}^{\prime} f_{1,2 k l}^{\prime}$. In either case, $t_{1,2 k l}, \ldots, t_{1,2 k l+k-1}$ are all in Z, and there is a contradiction because of the red edge $f_{1,2 k l+k-1} t_{1,2 k l+k-1}$ or $t_{1,2(l-1) k+k-1} f_{1,2 k l}^{\prime}$, or when $l=m+1$ because of $b_{1,1}$.
Case 3: $p=2 k l$ where $1 \leq l \leq m+1$ and $w=f_{1,2 k l}^{\prime}$. Then e is $f_{1,2 k l}^{\prime} t_{1,2(l-1) k+k-1}$ or $t_{1,2 k l}^{\prime} f_{1,2 k l}^{\prime}$. In either case, $f_{1,2 k l}, \ldots, f_{1,2 k l+k-1}$ are all in Z, and there is a contradiction because of the red edge $t_{1,2(l-1) k+k-1} f_{1,2(l-1) k+k-1}$ or $t_{1,2 k}^{\prime} f_{1,2 k l+k-1}$, or when $l=1$ because of $a_{1, k}$.
Case 4: $p=2 k l+k-1$ where $1 \leq l \leq m$ and $w=t_{1,2 k l+k-1}$. Then e is $t_{1,2 k l+k-1} f_{1,2 k l+k-1}, t_{1,2 k l+k-1} f_{1,2(l+1) k}^{\prime}$, or $t_{1,2 k l+k-1} u_{j, k}^{q}$ for some j, q. In the last case, there is a contradiction since $t_{1,2 k l+k-1}^{\prime} \in Z$ also sees $u_{j, k}^{q}$. For the same reason, $t_{1,2 k l+k-1}^{\prime} u_{j, k}^{q}$ is not an edge of Z and $t_{1,2 k l+k-1}^{\prime}, \ldots, t_{1,2(l+1) k}^{\prime}$ are all in Z. So there is a contradiction because of the red edge $t_{1,2 k l}^{\prime} f_{1,2 k l+k-1}$ or $t_{1,2(l+1) k}^{\prime} f_{1,2(l+1) k}^{\prime}$.
Case 5: $p=2 k l+k-1$ where $2 \leq l \leq m$ and $w=f_{1,2 k l+k-1}$. Then e is either $f_{1,2 k l+k-1} t_{1,2 k l+k-1}$ or $f_{1,2 k l+k-1} t_{1,2 k l}^{\prime}$ or $f_{1,2 k l+k-1} u_{j, k}^{q}$ for some j, q. In the last case, there is a contradiction since $f_{1,2 k l+k-1}^{\prime} \in Z$ also sees $u_{j, k}^{q}$. For the same reason, $f_{1,2 k l+k-1}^{\prime} u_{j, k}^{q}$ is not an edge of Z and $f_{1,2 k l+k-1}^{\prime}, \ldots, f_{1,2(l+1) k}^{\prime}$ are all in Z. So there is a contradiction because of the red edge $t_{1,2 k l}^{\prime} f_{1,2 k l}^{\prime}$ or $t_{1,2 k l+k-1} f_{1,2(l+1)}^{\prime}$.
Case 6: $p=2 k(m+1)+k-1$ and $w=f_{1,2 k(m+1)+k-1}$. Then there is a contradiction because of the red edge $t_{1,2 k(m+1)}^{\prime} f_{1,2 k(m+1)}^{\prime}$. This proves our claim.

Since $p=2 k(m+2)-1, b_{1,1}$ is in Z. We claim that $b_{1,2}$ is in Z. For otherwise, the two neighbours of $b_{1,1}$ in Z are $t_{1,2 k(m+2)-1}$ and $f_{1,2 k(m+2)-1}$. This is a contradiction because of the red edges $t_{1,2 k m+k-1} f_{1,2 k(m+1)}^{\prime}, t_{1,2 k(m+1)}^{\prime} f_{1,2 k(m+1)+k-1}$ (if $\alpha=2$) or $t_{1,2 k(m+1)} f_{1,2 k(m+1)}^{\prime}, t_{1,2 k(m+1)}^{\prime} f_{1,2 k(m+1)}($ if $\alpha=1)$. Similarly, $b_{1,1}^{\prime}, b_{1,2}^{\prime}$ are in Z. So $b_{1,1}, \ldots, b_{1, k}$ and $b_{1,1}^{\prime}, \ldots, b_{1, k}^{\prime}$ are all in Z.

This proves (1) for $i=1$. The proof for $i=2, \ldots, n$ is essentially the same as for $i=1$. This proves (1).
(2) For $j=1, \ldots, m, Z$ contains $c_{j, 1}, \ldots, c_{j, k}, d_{j, 1}, \ldots, d_{j, k}$ and exactly one of $\left\{u_{j, 1}^{1}, \ldots, u_{j, 2 k}^{1}\right\},\left\{u_{j, 1}^{2}, \ldots, u_{j, 2 k}^{2}\right\},\left\{u_{j, 1}^{3}, \ldots, u_{j, 2 k}^{3}\right\}$. Let us first deal with the case $j=1$. By (1), $b_{n, k}^{\prime}$ is in Z and so $c_{1,1}, \ldots, c_{1, k}$ are all in Z. Consequently exactly one of $u_{1,1}^{1}, u_{1,1}^{2}, u_{1,1}^{3}$ is in Z, say $u_{1,1}^{1}$ up to a symmetry. Note that the neighbour of u_{1}^{1} in $Z \backslash c_{1, k}$ cannot be a vertex among $u_{1,1}^{2}, u_{1,1}^{3}$ for this would imply that Z contains a triangle. Hence $u_{1,2}^{1}, \ldots, u_{1, k}^{1}$ are all in Z. The neighbour of $u_{1, k}^{1}$ in $Z \backslash u_{1, k-1}^{1}$ cannot be in some $G\left(z_{i}\right)(1 \leq i \leq n)$. Else, up to a symmetry we assume that this neighbour is $t_{1, p}, p \in\{0, \ldots, 2 k(m+2)-1\}$. If $t_{1, p} \in Z$, there is a contradiction because then $t_{1, p}^{\prime}$ is also in Z by (1) and $t_{1, p}^{\prime}$ would be a third neighbour of $u_{1, k}^{1}$ in Z. If $t_{1, p} \notin Z$, there is a contradiction because then the neighbour of $t_{1, p}$ in $Z \backslash u_{1, k}^{1}$ must be $t_{1, p+1}$ (or symmetrically $t_{1, p-1}$) for
otherwise Z contains a triangle. So, $t_{1, p+1}, t_{1, p+2}, \ldots$ must be in Z, till reaching a vertex having a neighbour $f_{1, p^{\prime}}$ or $f_{1, p^{\prime}}^{\prime}$ in Z (whatever α). Thus the neighbour of $u_{1, k}^{1}$ in $Z \backslash u_{1, k-1}^{1}$ is $u_{1, k+1}^{1}$. Similarly, we prove that $u_{1, k+2}, \ldots, u_{1,2 k}$ are in Z, that $d_{1,1}, \ldots, d_{1, k}$ are in Z, and so the claim holds for $j=1$. The proof of the claim for $j=2, \ldots, m$ is essentially the same. This proves (2).

Together with x, y, the vertices of Z found in (1) and (2) actually induce a cycle. So, since Z is a hole, they are the members of Z and we can replace "at least" by "exactly" in (1). We can now make a Boolean vector ξ as follows. For $i=1, \ldots, n$, if Z contains $t_{i, 0}, t_{i, 0}^{\prime}$ set $\xi_{i}=1$; if Z contains $f_{i, 0}, f_{i, 0}^{\prime}$ set $\xi_{i}=0$. By (1) this is consistent. Consider any clause $C_{j}(1 \leq j \leq m)$. By (2) and up to symmetry we may assume that $u_{j, k}^{1}$ is in Z. If $y_{j}^{1}=z_{i}$ for some $i \in\{1, \ldots, n\}$, then the construction of G implies that $f_{i, 2 k j+k-1}, f_{i, 2 j+k-1}^{\prime}$ are not in Z, so $t_{i, 2 k j+k-1}, t_{i, 2 k j+k-1}^{\prime}$ are in Z, so $\xi_{i}=1$, so clause C_{j} is satisfied by x_{i}. If $y_{j}^{1}=\bar{z}_{i}$ for some $i \in\{1, \ldots, n\}$, then the construction of G_{f} implies that $t_{i, 2 k j+k-1}, t_{i, 2 k j+k-1}^{\prime}$ are not in Z, so $f_{i, 2 k j+k-1}, f_{i, 2 k j+k-1}^{\prime}$ are in Z, so $\xi_{i}=0$, so clause C_{j} is satisfied by \bar{z}_{i}. Thus ξ is a truth assignment satisfying f.

Theorem 2.3. Let $k \geq 5$ be an integer. Then $\Gamma_{\left\{C_{3}, \ldots, c_{k}, K_{1,6}\right\}}$ and $\Gamma_{\left\{I_{1}, \ldots, I_{k}, C_{5}, \ldots, c_{k}, K_{1,4}\right\}}$ are NP-complete.
Proof. It is a routine matter to check that the graph $G_{f}(k, 2,0,0,0,0,0)$ contains no $C_{l}(3 \leq l \leq k)$ and no $K_{1,6}$ (in fact it has no vertex of degree at least 6). So Lemma 2.2 implies that $\Gamma_{\left\{C_{3}, \ldots, C_{k}, K_{1,6}\right\}}$ is NP-complete.

It is a routine matter to check that the graph $G_{f}(k, 1,1,1,3,1,1)$ contains no $K_{1,4}$, no $C_{l}(5 \leq l \leq k)$ and no $I_{l^{\prime}}\left(1 \leq l^{\prime} \leq k\right)$. So Lemma 2.2 implies that $\Gamma_{\left\{K_{1,4}, C_{5}, \ldots, C_{k}, I_{1}, \ldots, I_{k}\right\}}$ is NP-complete.

2.3. Complexity of $\Gamma_{\{H\}}$ when H is a connected graph

Theorem 2.4. Let H be a connected graph. Then one of the following holds:

- H is a path or a subdivided claw and $\Gamma_{\{H\}}$ is polynomial.
- H contains one of $K_{1,4}, I_{k}$ for some $k \geq 1$, or C_{l} for some $l \geq 3$ as an induced subgraph and $\Gamma_{\{H\}}$ is NP-complete.

Proof. If H contains one of $K_{1,4}, I_{k}$ for some $k \geq 1$, or C_{l} for some $l \geq 3$ as an induced subgraph then $\Gamma_{\{H\}}$ is NP-complete by Theorem 2.3. Otherwise, H is a tree since it contains no $C_{l}, l \geq 3$. If H has no vertex of degree at least 3 , then H is a path and $\Gamma_{\{H\}}$ is polynomial by Theorem 2.1. If H has a single vertex of degree at least 3, then this vertex has degree 3 because H contains no $K_{1,4}$. So, H is a subdivided claw and $\Gamma_{\{H\}}$ is polynomial by Theorem 2.1. If H has at least two vertices of degree at least 3 then H contains an I_{l}, where l is the minimum length of a path of H joining two such vertices. This is a contradiction.

Interestingly, the following analogous result for finding maximum stable sets in H-free graphs was proved by Alekseev:
Theorem 2.5 (Alekseev, [1]). Let H be a connected graph that is not a path nor a subdivided claw. Then the problem of finding a maximum stable set in H-free graphs is NP-hard.

But the complexity of the maximum stable set problem is not known in general for H-free graphs when H is a path or a subdivided claw. See [7] for a survey.

2.4. NP-complete cases (bounded degree)

Here, we will show that Γ^{d} is NP-complete when $d \geq 3$ and polynomial when $d=2$. If s is any finite list of cycles $C_{k_{1}}, C_{k_{2}}, \ldots, C_{k_{m}}$, then we will also show that Γ_{δ}^{3} is NP-complete as long as $C_{6} \notin \curvearrowright$.

Let f be an instance of 3-SATISFIABILITY, consisting of m clauses C_{1}, \ldots, C_{m} on n variables z_{1}, \ldots, z_{n}. For each clause $C_{j}(j=1, \ldots, m)$, with $C_{j}=y_{3 j-2} \vee y_{3 j-1} \vee y_{3 j}$, then $y_{i}(i=1, \ldots, 3 m)$ is a literal from $\left\{z_{1}, \ldots, z_{n}, \bar{z}_{1}, \ldots, \bar{z}_{n}\right\}$.

Let us build a graph G_{f} with two specified vertices x and y of degree 2 such that $\Delta\left(G_{f}\right)=3$. There will be a hole containing x and y in G_{f} if and only if there exists a truth assignment satisfying f.

For each literal $y_{j}(j=1, \ldots, 3 m)$, prepare a graph $G\left(y_{j}\right)$ on 20 vertices $\alpha, \alpha^{\prime}, \alpha^{1+}, \ldots, \alpha^{4+}, \alpha^{1-}, \ldots, \alpha^{4-}$, $\beta, \beta^{\prime}, \beta^{1+}, \ldots, \beta^{4+}, \beta^{1-}, \ldots, \beta^{4-}$. (We drop the subscript j in the labels of the vertices for clarity.)

For $i=1,2,3$ add the edges $\alpha^{i+} \alpha^{(i+1)+}, \beta^{i+} \beta^{(i+1)+}, \alpha^{i-} \alpha^{(i+1)-}, \beta^{i-} \beta^{(i+1)-}$. Also add the edges $\alpha^{1+} \beta^{1-}, \alpha^{1-} \beta^{1+}, \alpha^{4+} \beta^{4-}$, $\alpha^{4-} \beta^{4+}, \alpha \alpha^{1+}, \alpha \alpha^{1-}, \alpha^{4+} \alpha^{\prime}, \alpha^{4-} \alpha^{\prime}, \beta \beta^{1+}, \beta \beta^{1-}, \beta^{4+} \beta^{\prime}, \beta^{4-} \beta^{\prime}$. See Fig. 11.

For each clause $C_{j}(j=1, \ldots, m)$, prepare a graph $G\left(C_{j}\right)$ with 10 vertices $c^{1+}, c^{2+}, c^{3+}, c^{1-}, c^{2-}, c^{3-}, c^{0+}, c^{12+}, c^{0-}, c^{12-}$. (We drop the subscript j in the labels of the vertices for clarity.)

Add the edges $c^{12+} c^{1+}, c^{12+} c^{2+}, c^{12-} c^{1-}, c^{12-} c^{2-}, c^{0+} c^{12+}, c^{0+} c^{3+}, c^{0-} c^{12-}, c^{0-} c^{3-}$. See Fig. 12.
For each variable $z_{i}(i=1, \ldots, n)$, prepare a graph $G\left(z_{i}\right)$ with $2 z_{i}^{-}+2 z_{i}^{+}$vertices, where z_{i}^{-}is the number of times \bar{z}_{i} appears in clauses C_{1}, \ldots, C_{m} and z_{i}^{+}is the number of times z_{i} appears in clauses C_{1}, \ldots, C_{m}.

Let $G\left(z_{i}\right)$ consist of two internally disjoint paths P_{i}^{+}and P_{i}^{-}with common endpoints d_{i}^{+}and d_{i}^{-}and lengths $1+2 z_{i}^{-}$and $1+2 z_{i}^{+}$respectively. Label the vertices of P_{i}^{+}as $d_{i}^{+}, p_{i, 1}^{+}, \ldots, p_{i, 2 f_{i}}^{+}, d_{i}^{-}$and label the vertices of P_{i}^{-}as $d_{i}^{+}, p_{i, 1}^{-}, \ldots, p_{i, 2 g_{i}}^{-}, d_{i}^{-}$. See Fig. 13.

Fig. 11. The graph $G\left(y_{j}\right)$.

Fig. 12. The graph $G\left(C_{j}\right)$.

Fig. 13. The graph $G\left(z_{i}\right)$.

Fig. 14. The final graph G_{f}.
The final graph G_{f} (see Fig. 14) will be constructed from the disjoint union of all the graphs $G\left(y_{j}\right), G\left(C_{i}\right)$, and $G\left(z_{i}\right)$ with the following modifications:

- For $j=1, \ldots, 3 m-1$, add the edges $\alpha_{j}^{\prime} \alpha_{j+1}$ and $\beta_{j}^{\prime} \beta_{j+1}$.
- For $j=1, \ldots, m-1$, add the edge $c_{j}^{0-} c_{j+1}^{0+}$.
- For $i=1, \ldots, n-1$, add the edge $d_{i}^{-} d_{i+1}^{+}$.
- For $i=1, \ldots, n$, let $y_{n_{1}}, \ldots, y_{n_{z_{i}^{-}}}$be the occurrences of \bar{z}_{i} over all literals. For $j=1, \ldots, z_{i}^{-}$, delete the edge $p_{i, 2 j-1}^{+} p_{i, 2 j}^{+}$ and add the four edges $p_{i, 2 j-1}^{+} \alpha_{n_{j}}^{2+}, p_{i, 2 j-1}^{+} \beta_{n_{j}}^{2+}, p_{i, 2 j}^{+} \alpha_{n_{j}}^{3+}, p_{i, 2 j}^{+} \beta_{n_{j}}^{3+}$.
- For $i=1, \ldots, n$, let $y_{n_{1}}, \ldots, y_{n_{z_{i}^{+}}}$be the occurrences of z_{i} over all literals. For $j=1,2, \ldots, z_{i}^{+}$, delete the edge $p_{i, 2 j-1}^{-} p_{i, 2 j}^{-}$ and add the four edges $p_{i, 2 j-1}^{-} \alpha_{n_{j}}^{2+}, p_{i, 2 j-1}^{-} \beta_{n_{j}}^{2+}, p_{i, 2 j}^{-} \alpha_{n_{j}}^{3+}, p_{i, 2 j}^{-} \beta_{n_{j}}^{3+}$.
- For $i=1, \ldots, m$ and $j=1,2,3$, add the edges $\alpha_{3(i-1)+j}^{2-} c_{i}^{j+}, \alpha_{3(i-1)+j}^{3-} c_{i}^{j-}, \beta_{3(i-1)+j}^{2-} c_{i}^{j+}, \beta_{3(i-1)+j}^{3-} c_{i}^{j-}$.
- Add the edges $\alpha_{3 m}^{\prime} d_{1}^{+}$and $\beta_{3 m}^{\prime} c_{1}^{0+}$
- Add the vertex x and add the edges $x \alpha_{1}$ and $x \beta_{1}$.
- Add the vertex y and add the edges $y c_{m}^{0-}$ and $y d_{n}^{-}$.

It is easy to verify that $\Delta\left(G_{f}\right)=3$, that the size of G_{f} is polynomial (actually linear) in the size $n+m$ of f, and that x, y are non-adjacent and both have degree two.

Lemma 2.6. f is satisfied by a truth assignment if and only if G_{f} contains a hole passing through x and y.
Proof. First assume that f is satisfied by a truth assignment $\xi \in\{0,1\}^{n}$. We will pick a set of vertices that induce a hole containing x and y.

1. Pick vertices x and y.
2. For $i=1, \ldots, 3 m$, pick the vertices $\alpha_{i}, \alpha_{i}^{\prime}, \beta_{i}, \beta_{i}^{\prime}$.
3. For $i=1, \ldots, 3 m$, if y_{i} is satisfied by ξ, then pick the vertices $\alpha_{i}^{1+}, \alpha_{i}^{2+}, \alpha_{i}^{3+}, \alpha_{i}^{4+}, \beta_{i}^{1+}, \beta_{i}^{2+}, \beta_{i}^{3+}$, and β_{i}^{4+}. Otherwise, pick the vertices $\alpha_{i}^{1-}, \alpha_{i}^{2-}, \alpha_{i}^{3-}, \alpha_{i}^{4-}, \beta_{i}^{1-}, \beta_{i}^{2-}, \beta_{i}^{3-}$, and β_{i}^{4-}.
4. For $i=1, \ldots, n$, if $\xi_{i}=1$, then pick all the vertices of the path P_{i}^{+}and all the neighbours of the vertices in P_{i}^{+}of the form α_{k}^{2+} or α_{k}^{3+} for any k.
5. For $i=1, \ldots, n$, if $\xi_{i}=0$, then pick all the vertices of the path P_{i}^{-}and all the neighbours of the vertices in P_{i}^{-}of the form α_{k}^{2+} or α_{k}^{3+} for any k.
6. For $i=1, \ldots, m$, pick the vertices c_{i}^{0+} and c_{i}^{0-}. Choose any $j \in\{3 i-2,3 i-1,3 i\}$ such that ξ satisfies y_{j}. Pick vertices α_{j}^{2-}, and α_{j}^{3-}. If $j=3 i-2$, then pick the vertices $c_{i}^{12+}, c_{i}^{1+}, c_{i}^{1-}, c_{i}^{12-}$. If $j=3 i-1$, then pick the vertices $c_{i}^{12+}, c_{i}^{2+}, c_{i}^{2-}$, c_{i}^{12-}. If $j=3 i$, then pick the vertices c_{i}^{3+} and c_{i}^{3-}.
It suffices to show that the chosen vertices induce a hole containing x and y. The only potential problem is that for some k, one of the vertices $\alpha_{k}^{2+}, \alpha_{k}^{3+}, \alpha_{k}^{2-}$, or α_{k}^{3-} was chosen more than once. If α_{k}^{2+} and α_{k}^{3+} were picked in Step 3 , then y_{k} is satisfied by ξ. Therefore, α_{k}^{2+} and α_{k}^{3+} were not chosen in Step 4 or Step 5 . Similarly, if α_{k}^{2-} and α_{k}^{3-} were picked in Step 6 , then y_{k} is satisfied by ξ and α_{k}^{2-} and α_{k}^{3-} were not picked in Step 3 . Thus, the chosen vertices induce a hole in G containing vertices x and y.

Now assume G_{f} contains a hole H passing through x and y. The hole H must contain α_{1} and β_{1} since they are the only two neighbours of x. Next, either both α_{1}^{1+} and β_{1}^{1+} are in H, or both α_{1}^{1-} and β_{1}^{1-} are in H.

Without loss of generality, let α_{1}^{1+} and β_{1}^{1+} be in H (the same reasoning that follows will hold true for the other case). Since β_{1}^{1-} and α_{1}^{1-} are both neighbours of two members in H, they cannot be in H. Thus, α_{1}^{2+} and β_{1}^{2+} must be in H. Since α_{1}^{2+} and β_{1}^{2+} have the same neighbour outside $G\left(y_{1}\right)$, it follows that H must contain α_{1}^{3+} and β_{1}^{3+}. Also, H must contain α_{1}^{4+} and β_{1}^{4+}. Suppose that α_{1}^{4-} and β_{1}^{4-} are in H. Because α_{1}^{i-} has the same neighbour as β_{1}^{i-} outside $G\left(y_{1}\right)$ for $i=2$, 3, it follows that H must contain $\alpha_{1}^{3-}, \alpha_{1}^{2-}$, and α_{1}^{1-}. But then H is not a hole containing b, a contradiction. Therefore, α_{1}^{4-} and β_{1}^{4-} cannot both be in H, so H must contain $\alpha_{1}^{\prime}, \beta_{1}^{\prime}, \alpha_{2}$, and β_{2}.

By induction, we see for $i=1,2, \ldots, 3 m$ that H must contain $\alpha_{i}, \alpha_{i}^{\prime}, \beta_{i}, \beta_{i}^{\prime}$. Also, for each i, either H contains $\alpha_{i}^{1+}, \alpha_{i}^{2+}$, $\alpha_{i}^{3+}, \alpha_{i}^{4+}, \beta_{i}^{1+}, \beta_{i}^{2+}, \beta_{i}^{3+}, \beta_{i}^{4+}$ or H contains $\alpha_{i}^{1-}, \alpha_{i}^{2-}, \alpha_{i}^{3-}, \alpha_{i}^{4-}, \beta_{i}^{1-}, \beta_{i}^{2-}, \beta_{i}^{3-}, \beta_{i}^{4-}$.

As a result, H must also contain d_{1}^{+}and c_{1}^{0+}. By symmetry, we may assume H contains $p_{1,1}^{+}$and α_{k}^{2+} for some k. Since α_{k}^{1+} is adjacent to two vertices in H, H must contain α_{k}^{3+}. Similarly, H cannot contain α_{k}^{4+}, so H contains $p_{1,2}^{+}$and $p_{1,3}^{+}$. By induction, we see that H contains $p_{1, i}^{+}$for $i=1,2, \ldots, z_{i}^{+}$and d_{1}^{-}. If H contains $p_{1, z_{i}^{-}}^{-}$, then H must contain $p_{1, i}^{-}$for $i=z_{i}^{-}, \ldots, 1$, a contradiction. Thus, H must contain d_{2}^{+}. By induction, for $i=1,2, \ldots, n$, we see that H contains all the vertices of the path P_{i}^{+}or P_{i}^{-}and by symmetry, we may assume H contains all the neighbours of the vertices in P_{i}^{+}or P_{i}^{-}of the form α_{k}^{2+} or α_{k}^{3+} for any k.

Similarly, for $i=1,2, \ldots, m$, it follows that H must contain c_{i}^{0+} and c_{i}^{0-}. Also, H contains one of the following:

- $c_{i}^{12+}, c_{i}^{1+}, c_{i}^{1-}, c_{i}^{12-}$ and either α_{j}^{2-} and α_{j}^{3-} or β_{j}^{2-} and β_{j}^{3-} (where α_{j}^{2-} is adjacent to c_{i}^{1+}).
- $c_{i}^{12+}, c_{i}^{2+}, c_{i}^{2-}, c_{i}^{12-}$ and either α_{j}^{2-} and α_{j}^{3-} or β_{j}^{2-} and β_{j}^{3-} (where α_{j}^{2-} is adjacent to c_{i}^{2+}).
- c_{i}^{3+} and c_{i}^{3-} and either α_{j}^{2-} and α_{j}^{3-} or β_{j}^{2-} and β_{j}^{3-} (where α_{j}^{2-} is adjacent to c_{i}^{3+}).

We can recover the satisfying assignment ξ as follows. For $i=1,2, \ldots, n$, set $\xi_{i}=1$ if the vertices of P_{i}^{+}are in H and set $\xi_{i}=0$ if the vertices of P_{i}^{-}are in H. By construction, it is easy to verify that at least one literal in every clause is satisfied, so ξ is indeed a satisfying assignment.

Note that the graph G_{f} used above contains several C_{6} 's that we could not eliminate, induced for instance by $\alpha, \alpha^{1+}, \beta^{1-}, \beta, \beta^{1+}, \alpha^{1-}$.

Theorem 2.7. The following statements hold:

- For any $d \in \mathbb{Z}$ with $d \geq 2$, the problem Γ^{d} is $N P$-complete when $d \geq 3$ and polynomial when $d=2$.
- If \mathscr{H} is any finite list of cycles $C_{k_{1}}, C_{k_{2}}, \ldots, C_{k_{m}}$ such that $C_{6} \notin \mathscr{H}$, then $\Gamma_{\mathscr{H}}^{3}$ is NP-complete.

Proof. In the above reduction, $\Delta\left(G_{f}\right)=3$ so Γ^{d} is NP-complete for $d \geq 3$. When $d=2$, there is a simple $O(n)$ algorithm. Any hole containing x and y must be a component of G so pick the vertex x and consider the component C of G that contains x. It takes $O(n)$ time to verify whether C is a hole containing x and y or not.

To show the second statement, let K be the length of the longest cycle in \mathscr{H}. In the above reduction, do the following modifications.

- For $i=1,2,3$ and $j=1,2, \ldots, 3 m$, replace the edges $\alpha_{j}^{i+} \alpha_{j}^{(i+1)+}, \alpha_{j}^{i-} \alpha_{j}^{(i+1)-}, \beta_{j}^{i+} \beta_{j}^{(i+1)+}$, and $\beta_{j}^{i-} \beta_{j}^{(i+1)-}$ by paths of length K.
- For $j=1,2, \ldots, 3 m-1$, replace the edges $\alpha_{j}^{\prime} \alpha_{j+1}$ and $\beta_{j}^{\prime} \beta_{j+1}$ by paths of length K.
- Replace the edges $x \alpha_{1}$ and $x \beta_{1}$ by paths of length K.

This new reduction is polynomial in n, m and contains no graph of the list \mathscr{H}. The proof of Lemma 2.6 still holds for this new reduction, therefore $\Gamma_{\mathscr{H}}^{3}$ is NP-complete.

3. Π_{B} for some special s-graphs

3.1. Holes with pending edges and trees

Here, we study $\Pi_{B_{4}}, \ldots, \Pi_{B_{7}}$ where B_{4}, \ldots, B_{7} are the s-graphs depicted on Fig. 3. Our motivation is simply to give a striking example and to point out that, surprisingly, pending edges of s-graphs matter and that even an s-graph with no cycle can lead to NP-complete problems.

Theorem 3.1. There is an $O\left(n^{13}\right)$-time algorithm for $\Pi_{B_{4}}$ but $\Pi_{B_{5}}$ is NP-complete.
Proof. A realisation of B_{4} has exactly one vertex of degree 3 and one vertex of degree 4 . Let us say that the realisation H is short if the distance between these two vertices in H is at most 3. Detecting short realisations of B_{4} can be done in time n^{9} as follows: for every 6 -tuple $F=\left(a, b, x_{1}, x_{2}, x_{3}, x_{4}\right)$ such that $G[F]$ has edge-set $\left\{x_{1} a, a x_{2}, x_{2} b, b x_{3}, b x_{4}\right\}$ and for every 7-tuple $F=\left(a, b, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ such that $G[F]$ has edge-set $\left\{x_{1} a, a x_{2}, x_{2} x_{3}, x_{3} b, b x_{4}, b x_{5}\right\}$, delete x_{1}, \ldots, x_{5} and their neighbours except a, b. In the resulting graph, check whether a and b are in the same component. The answer is YES for at least one 7-or-6-tuple if and only if G contains at least one short realisation of B_{4}.

Here is an algorithm for $\Pi_{B_{4}}$, assuming that the entry graph G has no short realisation of B_{4}. For every 9-tuple $F=$ ($a, b, c, x_{1}, \ldots, x_{6}$) such that $G[F]$ has edge-set $\left\{x_{1} a, b x_{2}, x_{2} x_{3}, x_{3} x_{4}, c x_{5}, x_{5} x_{3}, x_{3} x_{6}\right\}$ delete x_{1}, \ldots, x_{6} and their neighbours except a, b, c. In the resulting graph, run three-in-a-tree for a, b, c. It is easily checked that the answer is YES for some 9-tuple if and only if G contains a realisation of B_{4}.

Let us prove that $\Pi_{B_{5}}$ is NP-complete by a reduction of Γ^{3} to $\Pi_{B_{5}}$. Since by Theorem 2.7, Γ^{3} is NP-complete, this will complete the proof. Let (G, x, y) be an instance of Γ^{3}. Prepare a new graph G^{\prime} : add four vertices $x^{\prime}, x^{\prime \prime}, y^{\prime}, y^{\prime \prime}$ to G and add four edges $x x^{\prime}, x x^{\prime \prime}, y y^{\prime}, y y^{\prime \prime}$. Since $\Delta(G) \leq 3$, it is easily seen that G contains a hole passing through x, y if and only if G^{\prime} contains a realisation of B_{5}.

The proof of the theorem below is omitted since it is similar to the proof of Theorem 3.1.
Theorem 3.2. There is an $O\left(n^{14}\right)$-time algorithm for $\Pi_{B_{6}}$ but $\Pi_{B_{7}}$ is NP-complete.

3.2. Induced subdivisions of K_{5}

Here, we study the problem of deciding whether a graph contains an induced subdivision of K_{5}. More precisely, we put: $s K_{5}=\left(\{a, b, c, d, e\}, \emptyset,\binom{\{a, b, c, d, e\}}{2}\right)$.

Theorem 3.3. $\Pi_{S K_{5}}$ is NP-complete.

Proof. We consider an instance (G, x, y) of Γ^{3}. Let us denote by $x^{\prime}, x^{\prime \prime}$ the two neighbours of x and by $y^{\prime}, y^{\prime \prime}$ the two neighbours of y. Let us build a graph G^{\prime} by adding five vertices a, b, c, d, e. We add the edges $a b, b d, d c, c a, e a, e b, e c, e d, a x^{\prime}, b x^{\prime \prime}, c y^{\prime \prime}, d y^{\prime}$. We delete the edges $x x^{\prime}, x x^{\prime \prime}, y y^{\prime}, y y^{\prime \prime}$. We define a very similar graph $G^{\prime \prime}$, the only change being that we do not add edges $c y^{\prime \prime}, d y^{\prime}$ but edges $c y^{\prime}, d y^{\prime \prime}$ instead. See Fig. 15.

Now in G^{\prime} (and similarly $G^{\prime \prime}$) every vertex has degree at most 3, except for a, b, c, d, e. We claim that G contains a hole going through x and y if and only if at least one of $G^{\prime}, G^{\prime \prime}$ contains an induced subdivision of K_{5}. Indeed, if G contains a hole passing through $x, x^{\prime}, y^{\prime}, y, y^{\prime \prime}, x^{\prime \prime}$ in that order then G^{\prime} obviously contains an induced subdivision of K_{5}, and if the hole passes in order through $x, x^{\prime}, y^{\prime \prime}, y, y^{\prime}, x^{\prime \prime}$ then $G^{\prime \prime}$ contains such a subgraph. Conversely, if G^{\prime} (or symmetrically $G^{\prime \prime}$) contains an induced subdivision of K_{5} then a, b, c, d, e must be the vertices of the underlying K_{5}, because they are the only vertices with degree at least 4 . Hence there is a path from x^{\prime} to y^{\prime} in $G \backslash\{x, y\}$ and a path from $x^{\prime \prime}$ to $y^{\prime \prime}$ in $G \backslash\{x, y\}$, and consequently a hole going through x, y in G.

Fig. 15. Graphs G^{\prime} and $G^{\prime \prime}$.

3.3. Π_{B} for small B's

Here, we survey the complexity Π_{B} when B has at most four vertices. By the remarks in the introduction, if $|V| \leq 3$ then $\Pi_{(V, D, F)}$ is polynomial. Up to symmetries, we are left with twelve s-graphs on four vertices as shown below.

For the following two s-graphs, there is a polynomial algorithm using three-in-a-tree. The two algorithms are essentially similar to those for thetas and pyramids (see Fig. 2). See [5] for details.

The next two s-graphs yield an NP-complete problem:

For the next seven graphs on four vertices, we could not get an answer:

For the last graph represented below, it was proved recently by Trotignon and Vušković [11] that the problem can be solved in time $O(n m)$, using a method based on decompositions.

In conclusion we would like to point out that, except for the problem solved in [11], every detection problem associated with an s-graph for which a polynomial time algorithm is known can be solved either by using three-in-a-tree or by some easy brute-force enumeration.

Acknowledgments

This work has been partially supported by ADONET network, a Marie Curie training network of the European Community.

References

[1] V.E. Alekseev, On the local restrictions effect on the complexity of finding the graph independence number, Combinatorial-Algebraic Methods in Applied Mathematics 132 (1983) 3-13. Gorky University Press, Gorky (in Russian).
[2] N. Alon, R. Yuster, U. Zwick, Finding and counting given length cycles, in: Proceedings of the 2nd European Symposium on Algorithms, Utrecht, The Netherlands, 1994, pp. 354-364.
[3] D. Bienstock, On the complexity of testing for odd holes and induced odd paths, Discrete Mathematics 90 (1991) 85-92. See also Corrigendum by B. Reed, Discrete Math. 102 (1992) 109.
[4] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour, K. Vušković, Recognizing Berge graphs, Combinatorica 25 (2005) 143-186.
[5] M. Chudnovsky, P. Seymour, The three-in-a-tree problem, Manuscript.
[6] M.R. Garey, D.S. Johnson, Computer and Intractability: A Guide to the Theory of NP-completeness, W.H. Freeman, San Fransisco, 1979.
[7] A. Hertz, V.V. Lozin, The maximum independent set problem and augmenting graphs, in: D. Avis, A. Hertz, O. Marcotte (Eds.), Graph Theory and Combinatorial Optimization, Springer, 2005, pp. 69-99.
[8] F. Maffray, N. Trotignon, Algorithms for perfectly contractile graphs, SIAM Journal on Discrete Mathematics 19 (3) (2005) 553-574.
[9] F. Maffray, N. Trotignon, K. Vušković, Algorithms for square-3PC(•, •)-free Berge graphs, SIAM Journal on Discrete Mathematics 22((1) (2008) 51-71.
[10] D.J. Rose, R.E. Tarjan, G.S. Lueker, Algorithmic aspects of vertex elimination of graphs, SIAM Journal on Computing 5 (1976) 266-283.
[11] N. Trotignon, K. Vušković, A structure theorem for graphs with no cycle with a unique chord and its consequences, Journal of Graph Theory (in press).

[^0]: * Corresponding author.

 E-mail addresses: benjamin.leveque@g-scop.inpg.fr (B. Lévêque), dylin@princeton.edu (D.Y. Lin), Frederic.Maffray@g-scop.inpg.fr (F. Maffray), nicolas.trotignon@liafa.jussieu.fr (N. Trotignon).

