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a b s t r a c t

An s-graph is a graphwith two kinds of edges: subdivisible edges and real edges. A realisation
of an s-graph B is any graph obtained by subdividing subdivisible edges of B into paths
of arbitrary length (at least one). Given an s-graph B, we study the decision problem ΠB
whose instance is a graph G and question is ‘‘Does G contain a realisation of B as an induced
subgraph?’’. For several B’s, the complexity ofΠB is known and herewe give the complexity
for several more.
Our NP-completeness proofs for ΠB’s rely on the NP-completeness proof of the

following problem. Let S be a set of graphs and d be an integer. Let Γ dS be the problem
whose instance is (G, x, y) where G is a graph whose maximum degree is at most d, with
no induced subgraph in S and x, y ∈ V (G) are two non-adjacent vertices of degree 2.
The question is ‘‘Does G contain an induced cycle passing through x, y?’’. Among several
results, we prove that Γ 3

∅
is NP-complete. We give a simple criterion on a connected graph

H to decide whether Γ +∞
{H} is polynomial or NP-complete. The polynomial cases rely on the

algorithm three-in-a-tree, due to Chudnovsky and Seymour.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper graphs are simple and finite. A subdivisible graph (s-graph for short) is a triple B = (V ,D, F) such that
(V ,D ∪ F) is a graph and D ∩ F = ∅. The edges in D are said to be real edges of B while the edges in F are said to be
subdivisible edges of B. A realisation of B is a graph obtained from B by subdividing edges of F into paths of arbitrary length
(at least one). The problem ΠB is the decision problem whose input is a graph G and whose question is ’’Does G contain a
realisation of B as an induced subgraph?’’. On figures, we depict real edges of an s-graph with straight lines, and subdivisible
edges with dashed lines.
Several interesting instances of ΠB are studied in the literature. For some of them, the existence of a polynomial time

algorithm is trivial, but efforts are devoted toward optimized algorithms. For example, Alon, Yuster and Zwick [2] solveΠT
in time O(m1.41) (instead of the obvious O(n3) algorithm), where T is the s-graph depicted on Fig. 1. This problem is known
as triangle detection. Rose, Tarjan and Lueker [10] solveΠH in time O(n+m)where H is the s-graph depicted on Fig. 1.
For someΠB’s, the existence of a polynomial time algorithm is non-trivial. A pyramid (resp. prism, theta) is any realisation

of the s-graph B1 (resp. B2, B3) depicted on Fig. 2. Chudnovsky and Seymour [4] gave an O(n9)-time algorithm for ΠB1 (or
equivalently, for detecting a pyramid). As far as we know, that is the first example of a solution to aΠB whose complexity
is non-trivial to settle. In contrast, Maffray and Trotignon [8] proved that ΠB2 (or detecting a prism) is NP-complete.

∗ Corresponding author.
E-mail addresses: benjamin.leveque@g-scop.inpg.fr (B. Lévêque), dylin@princeton.edu (D.Y. Lin), Frederic.Maffray@g-scop.inpg.fr (F. Maffray),

nicolas.trotignon@liafa.jussieu.fr (N. Trotignon).

0166-218X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2009.02.015

http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:benjamin.leveque@g-scop.inpg.fr
mailto:dylin@princeton.edu
mailto:Frederic.Maffray@g-scop.inpg.fr
mailto:nicolas.trotignon@liafa.jussieu.fr
http://dx.doi.org/10.1016/j.dam.2009.02.015


B. Lévêque et al. / Discrete Applied Mathematics 157 (2009) 3540–3551 3541

Fig. 1. s-graphs yielding trivially polynomial problems.

Fig. 2. Pyramids, prisms and thetas.

Fig. 3. Some s-graphs with pending edges.

Fig. 4. I1 .

Chudnovsky and Seymour [5] gave an O(n11)-time algorithm for PB3 (or detecting a theta). Their algorithm relies on the
solution of a problem called ‘‘three-in-a-tree’’, that wewill define precisely and use in Section 2. The three-in-tree algorithm
is quite general since it can be used to solve a lot ofΠB problems, including the detection of pyramids.
These facts are a motivation for a systematic study of ΠB. A further motivation is that very similar s-graphs can lead

to a drastically different complexity. The following example may be more striking than pyramid/prism/theta:ΠB4 ,ΠB6 are
polynomial and ΠB5 ,ΠB7 are NP-complete, where B4, . . . , B7 are the s-graphs depicted on Fig. 3. This will be proved in
Section 3.1.

1.1. Notation and remarks

By Ck (k ≥ 3)we denote the cycle on k vertices, by Kl (l ≥ 1) the clique on l vertices. A hole in a graph is an induced cycle
on at least four vertices. We denote by Il (l ≥ 1) the tree on l + 5 vertices obtained by taking a path of length l with ends
a, b, and adding four vertices, two of them adjacent to a, the other two to b; see Fig. 4. When a graph G contains a graph
isomorphic to H as an induced subgraph, we will often say ‘‘G contains an H ’’.
Let (V ,D, F) be an s-graph. Suppose that (V ,D∪ F) has a vertex of degree one incident to an edge e. ThenΠ(V ,D∪{e},F\{e})

andΠ(V ,D\{e},F∪{e}) have the same complexity, because a graph G contains a realisation of (V ,D ∪ {e}, F \ {e}) if and only if
it contains a realisation of (V ,D \ {e}, F ∪ {e}). For the same reason, if (V ,D ∪ F) has a vertex of degree two incident to the
edges e 6= f thenΠ(V ,D\{e}∪{f },F\{f }∪{e}),Π(V ,D\{f }∪{e},F\{e}∪{f }) andΠ(V ,D\{e,f },F∪{e,f }) have the same complexity. If |F | ≤ 1 then
Π(V ,D,F) is clearly polynomial. Thus, in the rest of the paper, we will consider only s-graphs (V ,D, F) such that:

• |F | ≥ 2;
• no vertex of degree one is incident to an edge of F ;
• every induced path of (V ,D ∪ F)with all interior vertices of degree 2 and whose ends have degree 6= 2 has at most one
edge in F . Moreover, this edge is incident to an end of the path;
• every induced cycle with at most one vertex v of degree at least 3 in (V ,D ∪ F) has at most one edge in F and this edge
is incident to v if v exists (if it does not then the cycle is a component of (V ,D ∪ F)).

2. Detection of holes with prescribed vertices

Let∆(G) be themaximum degree of G. Let S be a set of graphs and d be an integer. Let Γ dS be the problemwhose instance
is (G, x, y) where G is a graph such that ∆(G) ≤ d, with no induced subgraph in S and x, y ∈ V (G) are two non-adjacent
vertices of degree 2. The question is ‘‘Does G contain a hole passing through x, y?’’. For simplicity, we write ΓS instead of
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Γ +∞S (so, the graph in the instance ofΓS has unbounded degree). AlsowewriteΓ d instead ofΓ d∅ (so the graph in the instance
of Γ d has no restriction on its induced subgraphs). Bienstock [3] proved that Γ = Γ∅ is NP-complete. For S = {K3} and
S = {K1,4}, ΓS can be shown to be NP-complete, and a consequence is the NP-completeness of several problems of interest:
see [8,9].
In this section, we try to settle Γ dS for as many S’s and d’s as we can. In particular, we give the complexity of ΓS when

S contains only one connected graph and of Γ d for all d. We also settle Γ dS for some cases when S is a set of cycles. The
polynomial cases are either trivial, or are a direct consequence of an algorithm of Chudnovsky and Seymour. The NP-
complete cases follow from several extensions of Bienstock’s construction.

2.1. Polynomial cases

Chudnovsky and Seymour [5] proved that the problem whose instance is a graph G together with three vertices a, b, c
and whose question is ‘‘Does G contain a tree passing through a, b, c as an induced subgraph?’’ can be solved in time O(n4).
We call this algorithm ‘‘three-in-a-tree’’. Three-in-a-tree can be used directly to solveΓS for several S’s. Let us call subdivided
claw any tree with one vertex u of degree 3, three vertices v1, v2, v3 of degree 1 and all the other vertices of degree 2.

Theorem 2.1. Let H be a graph on k vertices that is either a path or a subdivided claw. There is an O(nk)-time algorithm for Γ{H}.

Proof. Here is an algorithm for Γ{H}. Let (G, x, y) be an instance of ΓH . If H is a path on k vertices then every hole in G is on
at most k vertices. Hence, by a brute-force search on every k-tuple, we will find a hole through x, y if there is any. Now we
suppose that H is a subdivided claw. So k ≥ 4. For convenience, we put x1 = x, y1 = y. Let x0, x2 (resp. y0, y2) be the two
neighbours of x1 (resp. y1).
First check whether there is in G a hole C through x1, y1 such that the distance between x1 and y1 in C is at most k− 2. If

k = 4 or k = 5 then {x0, x1, x2, y0, y1, y2} either induces a hole (that we output) or a path P that is contained in every hole
through x, y. In this last case, the existence of a hole through x, y can be decided in linear time by deleting the interior of P ,
deleting the neighbours in G \ P of the interior vertices of P and by checking the connectivity of the resulting graph. Now
suppose k ≥ 6. For every l-tuple (x3, . . . , xl+2) of vertices ofG, with l ≤ k−5, testwhether P = x0−x1−· · ·−xl+2−y2−y1−y0
is an induced path, and if so delete the interior vertices of P and their neighbours except x0, y0, and look for a shortest path
from x0 to y0. This will find the desired hole if there is one, after possibly swapping x0, x2 and doing the work again. This
takes time O(nk−3).
Now we may assume that in every hole through x1, y1, the distance between x1, y1 is at least k− 1.
Let ki be the length of the unique path of H from u to vi, i = 1, 2, 3. Note that k = k1 + k2 + k3 + 1. Let us check every

(k−4)-tuple z = (x3, . . . , xk1+1, y3, . . . , yk2+k3) of vertices of G. For such a (k−4)-tuple, test whether x0− x1−· · ·− xk1+1
and P = y0 − y1 − · · · − yk2+k3 are induced paths of G with no edge between them except possibly xk1+1yk2+k3 . If not,
go to the next (k − 4)-tuple, but if yes, delete the interior vertices of P and their neighbours except y0, yk2+k3 . Also delete
the neighbours of x2, . . . , xk1 , except x1, x2, . . . , xk1 , xk1+1. Call Gz the resulting graph and run three-in-a-tree in Gz for the
vertices x1, yk2+k3 , y0. We claim that the answer to three-in-a-tree is YES for some (k − 4)-tuple if and only if G contains a
hole through x1, y1 (after possibly swapping x0, x2 and doing the work again).
To prove this, first assume thatG contains a holeC through x1, y1 thenup to a symmetry this hole visits x0, x1, x2, y2, y1, y0

in this order. Let us name x3, . . . , xk1+1 the vertices of C that follow after x1, x2 (in this order), and let us name y3, . . . , yk2+k3
those that follow after y1, y2 (in reverse order). Note that all these vertices exist and are pairwise distinct since in every hole
through x1, y1 the distance between x1, y1 is at least k − 1. So the path from y0 to yk2+k3 in C \ y1 is a tree of Gz passing
through x1, yk2+k3 , y0, where z is the (k− 4)-tuple (x3, . . . , xk1+1, y3, . . . , yk2+k3).
Conversely, suppose that Gz contains a tree T passing through x1, yk2+k3 , y0, for some (k − 4)-tuple z. We suppose that

T is vertex-inclusion-wise minimal. If T is a path visiting y0, x1, yk2+k3 in this order, then we obtain the desired hole of G by
adding y1, y2, . . . , yk2+k3−1 to T . If T is a path visiting x1, y0, yk2+k3 in this order, thenwe denote by yk2+k3+1 the neighbour of
yk2+k3 along T . Note that T contains either x0 or x2. If T contains x0, then there are three paths in G: y0−T−x0−x1−· · ·−xk1 ,
y0− T − yk2+k3+1− · · ·− yk3+2 and y0− y1− · · ·− yk3 . These three paths form a subdivided claw centered at y0 that is long
enough to contain an induced subgraph isomorphic to H , a contradiction. If T contains x2 then the proof works similarly
with y0 − T − xk1+1 − xk1 − · · · − x1 instead of y0 − T − x0 − x1 − · · · − xk1 . If T is a path visiting x1, yk2+k3 , y0 in this
order, the proof is similar, except that we find a subdivided claw centered at yk2+k3 . If T is not a path, then it is a subdivided
claw centered at a vertex u of G. We obtain again an induced subgraph of G isomorphic toH by adding to T sufficiently many
vertices of {x0, . . . , xk1+1, y0, . . . , yk2+k3}. �

2.2. NP-complete cases (unbounded degree)

Many NP-completeness results can be proved by adapting Bienstock’s construction. We give here several polynomial
reductions from the problem 3-Satisfiability of Boolean functions. These results are given in a framework that involves
a few parameters, so that our result can possibly be used for different problems of the same type. Recall that a Boolean
function with n variables is a mapping f from {0, 1}n to {0, 1}. A Boolean vector ξ ∈ {0, 1}n is a truth assignment satisfying
f if f (ξ) = 1. For any Boolean variable z on {0, 1}, we write z := 1 − z, and each of z, z is called a literal. An instance of
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Fig. 5. The graph G(zi) (only blue edges are depicted).

3-Satisfiability is a Boolean function f given as a product of clauses, each clause being the Boolean sum ∨ of three literals;
the question is whether f is satisfied by a truth assignment. The NP-completeness of 3-Satisfiability is a fundamental result
in complexity theory, see [6].
Let f be an instance of 3-Satisfiability, consisting of m clauses C1, . . . , Cm on n variables z1, . . . , zn. For every integer

k ≥ 3 and parameters α ∈ {1, 2}, β ∈ {0, 1}, γ ∈ {0, 1}, δ ∈ {0, 1, 2, 3}, ε ∈ {0, 1}, ζ ∈ {0, 1} such that if α = 2
then ε = β = γ , let us build a graph Gf (k, α, β, γ , δ, ε, ζ )with two specified vertices x, y of degree 2. There will be a hole
containing x and y in Gf (k, α, β, γ , δ, ε, ζ ) if and only if there exists a truth assignment satisfying f . In Gf (k, α, β, γ , δ, ε, ζ )
(we will sometimes write Gf for short), there will be two kinds of edges: blue and red. The reason for this distinction will
appear later. Let us now describe Gf .

2.2.1. Pieces of Gf arising from variables
For each variable zi (i = 1, . . . , n), prepare a graph G(zi) with 4k vertices ai,r , bi,r , a′i,r , b

′

i,r , r ∈ {1, . . . , k}
and 4(m + 2)2k vertices ti,2pk+r , fi,2pk+r , t ′i,2pk+r , f

′

i,2pk+r , p ∈ {0, . . . ,m + 1}, r ∈ {0, . . . , 2k − 1}. Add blue
edges so that the four sets {ai,1, . . . ai,k, ti,0, . . . , ti,2k(m+2)−1, bi,1, . . . , bi,k}, {ai,1, . . . ai,k, fi,0, . . . , fi,2k(m+2)−1, bi,1, . . . , bi,k},
{a′i,1, . . . a

′

i,k, t
′

i,0, . . . , t
′

i,2k(m+2)−1, b
′

i,1, . . . , b
′

i,k}, {a
′

i,1, . . . a
′

i,k, f
′

i,0, . . . , f
′

i,2k(m+2)−1, b
′

i,1, . . . , b
′

i,k} all induce paths (and the
vertices appear in this order along these paths). See Fig. 5.
Add red edges according to the value of α, β , γ , as follows:

• If α = 1 then, for every p = 1, . . . ,m + 1, add all edges between {ti,2kp, ti,2kp+β} and {fi,2kp, fi,2kp+γ },
between {fi,2kp, fi,2kp+γ } and {t ′i,2kp, t

′

i,2kp+β}, between {t
′

i,2kp, t
′

i,2kp+β} and {f
′

i,2kp, f
′

i,2kp+γ }, between {f
′

i,2kp, f
′

i,2kp+γ } and
{ti,2kp, ti,2kp+β}.
• If α = 2 then, for every p = 1, . . . ,m, add all edges between {ti,2kp+k−1, ti,2kp+k−1+β} and {fi,2kp+k−1, fi,2kp+k−1+γ }; for
every p = 1, . . . ,m+ 1, add all edges between {fi,2kp+k−1, fi,2kp+k−1+γ } and {t ′i,2kp, t

′

i,2kp+β}, between {t
′

i,2kp, t
′

i,2kp+β} and
{f ′i,2kp, f

′

i,2kp+γ }, between {f
′

i,2kp, f
′

i,2kp+γ } and {ti,2k(p−1)+k−1, ti,2k(p−1)+k−1+β}.

See Figs. 6 and 7.

2.2.2. Pieces of Gf arising from clauses
For each clause Cj (j = 1, . . . ,m), with Cj = y1j ∨ y

2
j ∨ y

3
j , where each y

q
j (q = 1, 2, 3) is a literal from

{z1, . . . , zn, z1, . . . , zn}, prepare a graph G(Cj) with 2k vertices cj,p, dj,p, p ∈ {1, . . . , k} and 6k vertices u
q
j,p, q ∈ {1, 2, 3},

p ∈ {1, . . . , 2k}. Add blue edges so that the three sets {cj,1, . . . , cj,k, u
q
j,1, . . . , u

q
j,2k, dj,1, . . . dj,k}, q ∈ {1, 2, 3} all induce

paths (and the vertices appear in this order along these paths).
Add red edges according to the value of δ:

• If δ = 0, add no edge.
• If δ = 1, add u1j,1u

2
j,1, u

1
j,2ku

2
j,2k.

• If δ = 2, add u1j,1u
2
j,1, u

1
j,2ku

2
j,2k, u

1
j,1u

3
j,1, u

1
j,2ku

3
j,2k.

• If δ = 3, add u1j,1u
2
j,1, u

1
j,2ku

2
j,2k, u

1
j,1u

3
j,1, u

1
j,2ku

3
j,2k, u

2
j,1u

3
j,1, u

2
j,2ku

3
j,2k.

See Fig. 8.

2.2.3. Gluing the pieces of Gf
The graph Gf (k, α, β, γ , δ, ε, ζ ) is obtained from the disjoint union of the G(zi)’s and the G(Cj)’s as follows. For i =

1, . . . , n− 1, add blue edges bi,kai+1,1 and b′i,ka
′

i+1,1. Add a blue edge b
′

n,kc1,1. For j = 1, . . . ,m− 1, add a blue edge dj,kcj+1,1.
Introduce the two special vertices x, y and add blue edges xa1,1, xa′1,1 and ydm,k, ybn,k. See Fig. 9.
Add red edges according to f , ε, ζ . For q = 1, 2, 3, if yqj = zi, then add all possible edges between {fi,2kj+k−1, fi,2kj+k−1+ε}

and {uqj,k, u
q
j,k+ζ } and between {f

′

i,2kj+k−1, f
′

i,2kj+k−1+ε} and {u
q
j,k, u

q
j,k+ζ }; if y

q
j = z i then add all possible edges between

{ti,2kj+k−1, ti,2kj+k−1+ε} and {u
q
j,k, u

q
j,k+ζ } and between {t

′

i,2kj+k−1, t
′

i,2kj+k−1+ε} and {u
q
j,k, u

q
j,k+ζ }. See Fig. 10.
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Fig. 6. The graph G(zi)when α = 1, β = 0, γ = 0.

Fig. 7. The graph G(zi)when α = 2, β = 0, γ = 0.

Fig. 8. The graph G(Cj)when δ = 3.

Fig. 9. The whole graph Gf .

Clearly the size of Gf (k, α, β, γ , δ, ε, ζ ) is polynomial (actually quadratic) in the size n+m of f , and x, y are non-adjacent
and both have degree two.

Lemma 2.2. f is satisfied by a truth assignment if and only if Gf (k, α, β, γ , δ, ε, ζ ) contains a hole passing through x, y.

Proof. Recall that if α = 2 then ε = β = γ . We will prove the lemma for β = 0, γ = 0, ε = 0, ζ = 0 because the proof is
essentially the same for the other possible values.
Suppose that f is satisfied by a truth assignment ξ ∈ {0, 1}n.We canbuild a hole inGby selecting vertices as follows. Select

x, y. For i = 1, . . . , n, select ai,p, bi,p, a′i,p, b
′

i,p for all p ∈ {1, . . . , k}. For j = 1, . . . ,m, select cj,p, dj,p for all p ∈ {1, . . . , k}.
If ξi = 1 select ti,p, t ′i,p for all p ∈ {0, . . . , 2k(m + 2) − 1}. If ξi = 0 select fi,p, f

′

i,p for all p ∈ {0, . . . , 2k(m + 2) − 1}. For
j = 1, . . . ,m, since ξ is a truth assignment satisfying f , at least one of the three literals of Cj is equal to 1, say y

q
j = 1 for some

q ∈ {1, 2, 3}. Then select uqj,p for all p ∈ {1, . . . , 2k}. Now it is a routine matter to check that the selected vertices induce a
cycle Z that contains x, y, and that Z is chordless, so it is a hole. The main point is that there is no chord in Z between some
subgraph G(Cj) and some subgraph G(zi), for that would be either an edge ti,pu

q
j,r with y

q
j = zi and ξi = 1, or, symmetrically,

an edge fi,pu
q
j,r with y

q
j = z i and ξi = 0, and in either case this would contradict the way the vertices of Z were selected.
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Fig. 10. Red edges between G(zi) and G(Cj)when ε = ζ = 0.

Conversely, suppose that Gf (k, α, β, γ , δ, ε, ζ ) admits a hole Z that contains x, y.
(1) For i = 1, . . . , n, Z contains at least 4k+4k(m+2) vertices of G(zi): 4k of these are ai,p, a′i,p, bi,p, b

′

i,p where p ∈ {1, . . . , k},
and the others are either the ti,p, t ′i,p’s or the fi,p, f

′

i,p’s where p ∈ {0, . . . , 2k(m+ 2)− 1}.
Let us first deal with the case i = 1. Since x ∈ Z has degree 2, Z contains a1,1, . . . , a1,k and a′1,1, . . . , a

′

1,k. Hence exactly one
of t1,0, f1,0 is in Z . Likewise exactly one of t ′1,0, f

′

1,0 is in Z . If t1,0, f
′

1,0 are both in Z then there is a contradiction: indeed, if
α = 1 then, t1,0, . . . , t1,2k and f ′1,0, . . . , f

′

1,2k must all be in Z , and since t1,2k sees f
′

1,2k, Z cannot go through y; and if α = 2
the proof is similar. Similarly, t ′1,0, f1,0 cannot both be in Z . So, there exists a largest integer p ≤ 2k(m + 2) − 1 such that
either t1,0, . . . , t1,p and t ′1,0, . . . , t

′

1,p are all in Z or f1,0, . . . , f1,p and f
′

1,0, . . . , f
′

1,p are all in Z .
We claim that p = 2k(m + 2) − 1. For otherwise, some vertex w in {t1,p, t ′1,p, f1,p, f

′

1,p} is incident to a red edge e of Z .
If α = 1 then, up to a symmetry, we assume that t1,0, . . . , t1,p and t ′1,0, . . . , t

′

1,p are all in Z . Let w
′ be the vertex of e that

is not w. Then w′ (which is either an f1,·, an f ′1,· or a u
·

j,·) is a neighbour of both t1,p, t
′

1,p. Hence, Z cannot go through y, a
contradiction. This proves our claim when α = 1. If α = 2, we distinguish between the following six cases.

Case 1: p = k−1. Then e = t1,k−1f ′1,2k. Clearly t1,0, . . . , t1,k−1must all be in Z . If t
′

1,0, . . . , t
′

1,2k are in Z , there is a contradiction
because of t ′1,2kf

′

1,2k, and if f
′

1,0, . . . , f
′

1,2k are in Z , there is a contradiction because of e.

Case 2: p = 2kl where 1 ≤ l ≤ m+ 1 and w = t ′1,2kl. Then e is t
′

1,2klf1,2kl+k−1 or t
′

1,2klf
′

1,2kl. In either case, t1,2kl, . . . , t1,2kl+k−1
are all in Z , and there is a contradiction because of the red edge f1,2kl+k−1t1,2kl+k−1 or t1,2(l−1)k+k−1f ′1,2kl, or when l = m + 1
because of b1,1.

Case 3: p = 2klwhere 1 ≤ l ≤ m+1 andw = f ′1,2kl. Then e is f
′

1,2klt1,2(l−1)k+k−1 or t
′

1,2klf
′

1,2kl. In either case, f1,2kl, . . . , f1,2kl+k−1
are all in Z , and there is a contradiction because of the red edge t1,2(l−1)k+k−1f1,2(l−1)k+k−1 or t ′1,2klf1,2kl+k−1, or when l = 1
because of a1,k.

Case 4: p = 2kl+ k− 1 where 1 ≤ l ≤ m and w = t1,2kl+k−1. Then e is t1,2kl+k−1f1,2kl+k−1, t1,2kl+k−1f ′1,2(l+1)k, or t1,2kl+k−1u
q
j,k

for some j, q. In the last case, there is a contradiction since t ′1,2kl+k−1 ∈ Z also sees u
q
j,k. For the same reason, t

′

1,2kl+k−1u
q
j,k is

not an edge of Z and t ′1,2kl+k−1, . . . , t
′

1,2(l+1)k are all in Z . So there is a contradiction because of the red edge t
′

1,2klf1,2kl+k−1 or
t ′1,2(l+1)kf

′

1,2(l+1)k.

Case 5: p = 2kl+k−1where 2 ≤ l ≤ mandw = f1,2kl+k−1. Then e is either f1,2kl+k−1t1,2kl+k−1 or f1,2kl+k−1t ′1,2kl or f1,2kl+k−1u
q
j,k

for some j, q. In the last case, there is a contradiction since f ′1,2kl+k−1 ∈ Z also sees u
q
j,k. For the same reason, f

′

1,2kl+k−1u
q
j,k is

not an edge of Z and f ′1,2kl+k−1, . . . , f
′

1,2(l+1)k are all in Z . So there is a contradiction because of the red edge t
′

1,2klf
′

1,2kl or
t1,2kl+k−1f ′1,2(l+1).

Case 6: p = 2k(m+1)+k−1 andw = f1,2k(m+1)+k−1. Then there is a contradiction because of the red edge t ′1,2k(m+1)f
′

1,2k(m+1).
This proves our claim.
Since p = 2k(m + 2) − 1, b1,1 is in Z . We claim that b1,2 is in Z . For otherwise, the two neighbours of b1,1 in Z are

t1,2k(m+2)−1 and f1,2k(m+2)−1. This is a contradiction because of the red edges t1,2km+k−1f ′1,2k(m+1), t
′

1,2k(m+1)f1,2k(m+1)+k−1 (if
α = 2) or t1,2k(m+1)f ′1,2k(m+1), t

′

1,2k(m+1)f1,2k(m+1) (if α = 1). Similarly, b
′

1,1, b
′

1,2 are in Z . So b1,1, . . . , b1,k and b
′

1,1, . . . , b
′

1,k are
all in Z .
This proves (1) for i = 1. The proof for i = 2, . . . , n is essentially the same as for i = 1. This proves (1).

(2) For j = 1, . . . ,m, Z contains cj,1, . . . , cj,k, dj,1, . . . , dj,k and exactly one of {u1j,1, . . . , u
1
j,2k}, {u

2
j,1, . . . , u

2
j,2k}, {u

3
j,1, . . . , u

3
j,2k}.

Let us first deal with the case j = 1. By (1), b′n,k is in Z and so c1,1, . . . , c1,k are all in Z . Consequently exactly one of
u11,1, u

2
1,1, u

3
1,1 is in Z , say u

1
1,1 up to a symmetry. Note that the neighbour of u

1
1 in Z \ c1,k cannot be a vertex among u

2
1,1, u

3
1,1

for this would imply that Z contains a triangle. Hence u11,2, . . . , u
1
1,k are all in Z . The neighbour of u

1
1,k in Z \ u

1
1,k−1 cannot

be in some G(zi) (1 ≤ i ≤ n). Else, up to a symmetry we assume that this neighbour is t1,p, p ∈ {0, . . . , 2k(m + 2) − 1}.
If t1,p ∈ Z , there is a contradiction because then t ′1,p is also in Z by (1) and t

′

1,p would be a third neighbour of u
1
1,k in Z . If

t1,p 6∈ Z , there is a contradiction because then the neighbour of t1,p in Z \ u11,k must be t1,p+1(or symmetrically t1,p−1) for
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otherwise Z contains a triangle. So, t1,p+1, t1,p+2, . . . must be in Z , till reaching a vertex having a neighbour f1,p′ or f ′1,p′ in
Z (whatever α). Thus the neighbour of u11,k in Z \ u

1
1,k−1 is u

1
1,k+1. Similarly, we prove that u1,k+2, . . . , u1,2k are in Z , that

d1,1, . . . , d1,k are in Z , and so the claim holds for j = 1. The proof of the claim for j = 2, . . . ,m is essentially the same. This
proves (2).
Together with x, y, the vertices of Z found in (1) and (2) actually induce a cycle. So, since Z is a hole, they are themembers

of Z and we can replace ‘‘at least’’ by ‘‘exactly’’ in (1). We can now make a Boolean vector ξ as follows. For i = 1, . . . , n, if
Z contains ti,0, t ′i,0 set ξi = 1; if Z contains fi,0, f

′

i,0 set ξi = 0. By (1) this is consistent. Consider any clause Cj (1 ≤ j ≤ m).
By (2) and up to symmetry we may assume that u1j,k is in Z . If y

1
j = zi for some i ∈ {1, . . . , n}, then the construction of G

implies that fi,2kj+k−1, f ′i,2j+k−1 are not in Z , so ti,2kj+k−1, t
′

i,2kj+k−1 are in Z , so ξi = 1, so clause Cj is satisfied by xi. If y
1
j = z i

for some i ∈ {1, . . . , n}, then the construction of Gf implies that ti,2kj+k−1, t ′i,2kj+k−1 are not in Z , so fi,2kj+k−1, f
′

i,2kj+k−1 are in
Z , so ξi = 0, so clause Cj is satisfied by z i. Thus ξ is a truth assignment satisfying f . �

Theorem 2.3. Let k ≥ 5 be an integer. Then Γ{C3,...,Ck,K1,6} and Γ{I1,...,Ik,C5,...,Ck,K1,4} are NP-complete.

Proof. It is a routine matter to check that the graph Gf (k, 2, 0, 0, 0, 0, 0) contains no Cl (3 ≤ l ≤ k) and no K1,6 (in fact it
has no vertex of degree at least 6). So Lemma 2.2 implies that Γ{C3,...,Ck,K1,6} is NP-complete.
It is a routinematter to check that the graphGf (k, 1, 1, 1, 3, 1, 1) contains noK1,4, no Cl (5 ≤ l ≤ k) and no Il′ (1 ≤ l′ ≤ k).

So Lemma 2.2 implies that Γ{K1,4,C5,...,Ck,I1,...,Ik} is NP-complete. �

2.3. Complexity of Γ{H} when H is a connected graph

Theorem 2.4. Let H be a connected graph. Then one of the following holds:
• H is a path or a subdivided claw and Γ{H} is polynomial.
• H contains one of K1,4, Ik for some k ≥ 1, or Cl for some l ≥ 3 as an induced subgraph and Γ{H} is NP-complete.

Proof. If H contains one of K1,4, Ik for some k ≥ 1, or Cl for some l ≥ 3 as an induced subgraph then Γ{H} is NP-complete
by Theorem 2.3. Otherwise, H is a tree since it contains no Cl, l ≥ 3. If H has no vertex of degree at least 3, then H is a
path and Γ{H} is polynomial by Theorem 2.1. If H has a single vertex of degree at least 3, then this vertex has degree 3
because H contains no K1,4. So, H is a subdivided claw and Γ{H} is polynomial by Theorem 2.1. If H has at least two vertices
of degree at least 3 then H contains an Il, where l is the minimum length of a path of H joining two such vertices. This is a
contradiction. �

Interestingly, the following analogous result for finding maximum stable sets in H-free graphs was proved by Alekseev:

Theorem 2.5 (Alekseev, [1]). Let H be a connected graph that is not a path nor a subdivided claw. Then the problem of finding a
maximum stable set in H-free graphs is NP-hard.

But the complexity of the maximum stable set problem is not known in general for H-free graphs when H is a path or a
subdivided claw. See [7] for a survey.

2.4. NP-complete cases (bounded degree)

Here, we will show that Γ d is NP-complete when d ≥ 3 and polynomial when d = 2. If S is any finite list of cycles
Ck1 , Ck2 , . . . , Ckm , then we will also show that Γ

3
S is NP-complete as long as C6 6∈ S.

Let f be an instance of 3-Satisfiability, consisting of m clauses C1, . . . , Cm on n variables z1, . . . , zn. For each clause
Cj (j = 1, . . . ,m), with Cj = y3j−2 ∨ y3j−1 ∨ y3j, then yi (i = 1, . . . , 3m) is a literal from {z1, . . . , zn, z1, . . . , zn}.
Let us build a graphGf with two specified vertices x and y of degree 2 such that∆(Gf ) = 3. Therewill be a hole containing

x and y in Gf if and only if there exists a truth assignment satisfying f .
For each literal yj (j = 1, . . . , 3m), prepare a graph G(yj) on 20 vertices α, α′, α1+, . . . , α4+, α1−, . . . , α4−,

β, β ′, β1+, . . . , β4+, β1−, . . . , β4−. (We drop the subscript j in the labels of the vertices for clarity.)
For i = 1, 2, 3 add the edges αi+α(i+1)+, β i+β(i+1)+, αi−α(i+1)−, β i−β(i+1)−. Also add the edges α1+β1−, α1−β1+, α4+β4−,

α4−β4+, αα1+, αα1−, α4+α′, α4−α′, ββ1+, ββ1−, β4+β ′, β4−β ′. See Fig. 11.
For each clause Cj (j = 1, . . . ,m), prepare a graph G(Cj)with 10 vertices c1+, c2+, c3+, c1−, c2−, c3−, c0+, c12+, c0−, c12−.

(We drop the subscript j in the labels of the vertices for clarity.)
Add the edges c12+c1+, c12+c2+, c12−c1−, c12−c2−, c0+c12+, c0+c3+, c0−c12−, c0−c3−. See Fig. 12.
For each variable zi (i = 1, . . . , n), prepare a graph G(zi) with 2z−i + 2z

+

i vertices, where z
−

i is the number of times z i
appears in clauses C1, . . . , Cm and z+i is the number of times zi appears in clauses C1, . . . , Cm.
Let G(zi) consist of two internally disjoint paths P+i and P

−

i with common endpoints d
+

i and d
−

i and lengths 1+ 2z
−

i and
1+ 2z+i respectively. Label the vertices of P

+

i as d
+

i , p
+

i,1, . . . , p
+

i,2fi
, d−i and label the vertices of P

−

i as d
+

i , p
−

i,1, . . . , p
−

i,2gi
, d−i .

See Fig. 13.
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Fig. 11. The graph G(yj).

Fig. 12. The graph G(Cj).

Fig. 13. The graph G(zi).

Fig. 14. The final graph Gf .

The final graph Gf (see Fig. 14) will be constructed from the disjoint union of all the graphs G(yj), G(Ci), and G(zi) with
the following modifications:

• For j = 1, . . . , 3m− 1, add the edges α′jαj+1 and β
′

jβj+1.

• For j = 1, . . . ,m− 1, add the edge c0−j c
0+
j+1.

• For i = 1, . . . , n− 1, add the edge d−i d
+

i+1.
• For i = 1, . . . , n, let yn1 , . . . , ynz−i

be the occurrences of z i over all literals. For j = 1, . . . , z−i , delete the edge p
+

i,2j−1p
+

i,2j

and add the four edges p+i,2j−1α
2+
nj , p

+

i,2j−1β
2+
nj , p

+

i,2jα
3+
nj , p

+

i,2jβ
3+
nj .

• For i = 1, . . . , n, let yn1 , . . . , ynz+i
be the occurrences of zi over all literals. For j = 1, 2, . . . , z+i , delete the edge p

−

i,2j−1p
−

i,2j

and add the four edges p−i,2j−1α
2+
nj , p

−

i,2j−1β
2+
nj , p

−

i,2jα
3+
nj , p

−

i,2jβ
3+
nj .

• For i = 1, . . . ,m and j = 1, 2, 3, add the edges α2−3(i−1)+jc
j+
i , α

3−
3(i−1)+jc

j−
i , β

2−
3(i−1)+jc

j+
i , β

3−
3(i−1)+jc

j−
i .

• Add the edges α′3md
+

1 and β
′

3mc
0+
1

• Add the vertex x and add the edges xα1 and xβ1.
• Add the vertex y and add the edges yc0−m and yd

−
n .
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It is easy to verify that ∆(Gf ) = 3, that the size of Gf is polynomial (actually linear) in the size n + m of f , and that x, y are
non-adjacent and both have degree two.

Lemma 2.6. f is satisfied by a truth assignment if and only if Gf contains a hole passing through x and y.

Proof. First assume that f is satisfied by a truth assignment ξ ∈ {0, 1}n. We will pick a set of vertices that induce a hole
containing x and y.

1. Pick vertices x and y.
2. For i = 1, . . . , 3m, pick the vertices αi, α′i , βi, β

′

i .
3. For i = 1, . . . , 3m, if yi is satisfied by ξ , then pick the vertices α1+i , α

2+
i , α

3+
i , α

4+
i , β

1+
i , β

2+
i , β

3+
i , and β

4+
i . Otherwise,

pick the vertices α1−i , α
2−
i , α

3−
i , α

4−
i , β

1−
i , β

2−
i , β

3−
i , and β

4−
i .

4. For i = 1, . . . , n, if ξi = 1, then pick all the vertices of the path P+i and all the neighbours of the vertices in P
+

i of the form
α2+k or α

3+
k for any k.

5. For i = 1, . . . , n, if ξi = 0, then pick all the vertices of the path P−i and all the neighbours of the vertices in P
−

i of the form
α2+k or α

3+
k for any k.

6. For i = 1, . . . ,m, pick the vertices c0+i and c0−i . Choose any j ∈ {3i − 2, 3i − 1, 3i} such that ξ satisfies yj. Pick vertices
α2−j , and α

3−
j . If j = 3i− 2, then pick the vertices c

12+
i , c1+i , c

1−
i , c

12−
i . If j = 3i− 1, then pick the vertices c12+i , c2+i , c

2−
i ,

c12−i . If j = 3i, then pick the vertices c3+i and c
3−
i .

It suffices to show that the chosen vertices induce a hole containing x and y. The only potential problem is that for some
k, one of the vertices α2+k , α

3+
k , α

2−
k , or α

3−
k was chosen more than once. If α2+k and α3+k were picked in Step 3, then yk is

satisfied by ξ . Therefore, α2+k and α
3+
k were not chosen in Step 4 or Step 5. Similarly, if α

2−
k and α

3−
k were picked in Step 6,

then yk is satisfied by ξ and α2−k and α
3−
k were not picked in Step 3. Thus, the chosen vertices induce a hole in G containing

vertices x and y.
Now assume Gf contains a hole H passing through x and y. The hole H must contain α1 and β1 since they are the only

two neighbours of x. Next, either both α1+1 and β
1+
1 are in H , or both α1−1 and β

1−
1 are in H .

Without loss of generality, let α1+1 and β1+1 be in H (the same reasoning that follows will hold true for the other case).
Since β1−1 and α1−1 are both neighbours of two members in H , they cannot be in H . Thus, α

2+
1 and β

2+
1 must be in H . Since

α2+1 and β
2+
1 have the same neighbour outside G(y1), it follows that H must contain α

3+
1 and β

3+
1 . Also, H must contain α

4+
1

and β4+1 . Suppose that α
4−
1 and β

4−
1 are inH . Because α

i−
1 has the same neighbour as β

i−
1 outside G(y1) for i = 2, 3, it follows

thatH must contain α3−1 , α
2−
1 , and α

1−
1 . But thenH is not a hole containing b, a contradiction. Therefore, α

4−
1 and β

4−
1 cannot

both be in H , so H must contain α′1, β
′

1, α2, and β2.
By induction, we see for i = 1, 2, . . . , 3m that H must contain αi, α′i , βi, β

′

i . Also, for each i, either H contains α
1+
i , α

2+
i ,

α3+i , α
4+
i , β

1+
i , β

2+
i , β

3+
i , β

4+
i or H contains α1−i , α

2−
i , α

3−
i , α

4−
i , β

1−
i , β

2−
i , β

3−
i , β

4−
i .

As a result,Hmust also contain d+1 and c
0+
1 . By symmetry, wemay assumeH contains p

+

1,1 andα
2+
k for some k. Sinceα

1+
k is

adjacent to two vertices in H , H must contain α3+k . Similarly, H cannot contain α
4+
k , so H contains p

+

1,2 and p
+

1,3. By induction,
we see that H contains p+1,i for i = 1, 2, . . . , z

+

i and d
−

1 . If H contains p
−

1,z−i
, then H must contain p−1,i for i = z

−

i , . . . , 1, a

contradiction. Thus, H must contain d+2 . By induction, for i = 1, 2, . . . , n, we see that H contains all the vertices of the path
P+i or P

−

i and by symmetry, wemay assume H contains all the neighbours of the vertices in P
+

i or P
−

i of the form α
2+
k or α

3+
k

for any k.
Similarly, for i = 1, 2, . . . ,m, it follows that H must contain c0+i and c

0−
i . Also, H contains one of the following:

• c12+i , c1+i , c
1−
i , c

12−
i and either α2−j and α

3−
j or β

2−
j and β3−j (where α2−j is adjacent to c

1+
i ).

• c12+i , c2+i , c
2−
i , c

12−
i and either α2−j and α

3−
j or β

2−
j and β3−j (where α2−j is adjacent to c

2+
i ).

• c3+i and c
3−
i and either α

2−
j and α

3−
j or β

2−
j and β3−j (where α2−j is adjacent to c

3+
i ).

We can recover the satisfying assignment ξ as follows. For i = 1, 2, . . . , n, set ξi = 1 if the vertices of P+i are in H and
set ξi = 0 if the vertices of P−i are in H . By construction, it is easy to verify that at least one literal in every clause is satisfied,
so ξ is indeed a satisfying assignment. �

Note that the graph Gf used above contains several C6’s that we could not eliminate, induced for instance by
α, α1+, β1−, β, β1+, α1−.

Theorem 2.7. The following statements hold:

• For any d ∈ Z with d ≥ 2, the problem Γ d is NP-complete when d ≥ 3 and polynomial when d = 2.
• If H is any finite list of cycles Ck1 , Ck2 , . . . , Ckm such that C6 6∈ H , then Γ 3H is NP-complete.
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Proof. In the above reduction, ∆(Gf ) = 3 so Γ d is NP-complete for d ≥ 3. When d = 2, there is a simple O(n) algorithm.
Any hole containing x and ymust be a component of G so pick the vertex x and consider the component C of G that contains
x. It takes O(n) time to verify whether C is a hole containing x and y or not.
To show the second statement, let K be the length of the longest cycle in H . In the above reduction, do the following

modifications.

• For i = 1, 2, 3 and j = 1, 2, . . . , 3m, replace the edges αi+j α
(i+1)+
j , αi−j α

(i+1)−
j , β i+j β

(i+1)+
j , and β i−j β

(i+1)−
j by paths of

length K .
• For j = 1, 2, . . . , 3m− 1, replace the edges α′jαj+1 and β

′

jβj+1 by paths of length K .
• Replace the edges xα1 and xβ1 by paths of length K .

This new reduction is polynomial in n,m and contains no graph of the listH . The proof of Lemma 2.6 still holds for this
new reduction, therefore Γ 3H is NP-complete. �

3. ΠB for some special s-graphs

3.1. Holes with pending edges and trees

Here, we study ΠB4 , . . . ,ΠB7 where B4, . . . , B7 are the s-graphs depicted on Fig. 3. Our motivation is simply to give a
striking example and to point out that, surprisingly, pending edges of s-graphs matter and that even an s-graph with no
cycle can lead to NP-complete problems.

Theorem 3.1. There is an O(n13)-time algorithm for ΠB4 but ΠB5 is NP-complete.

Proof. A realisation of B4 has exactly one vertex of degree 3 and one vertex of degree 4. Let us say that the realisation H is
short if the distance between these two vertices in H is at most 3. Detecting short realisations of B4 can be done in time n9 as
follows: for every 6-tuple F = (a, b, x1, x2, x3, x4) such that G[F ] has edge-set {x1a, ax2, x2b, bx3, bx4} and for every 7-tuple
F = (a, b, x1, x2, x3, x4, x5) such that G[F ] has edge-set {x1a, ax2, x2x3, x3b, bx4, bx5}, delete x1, . . . , x5 and their neighbours
except a, b. In the resulting graph, check whether a and b are in the same component. The answer is YES for at least one
7-or-6-tuple if and only if G contains at least one short realisation of B4.
Here is an algorithm for ΠB4 , assuming that the entry graph G has no short realisation of B4. For every 9-tuple F =

(a, b, c, x1, . . . , x6) such that G[F ] has edge-set {x1a, bx2, x2x3, x3x4, cx5, x5x3, x3x6} delete x1, . . . , x6 and their neighbours
except a, b, c. In the resulting graph, run three-in-a-tree for a, b, c. It is easily checked that the answer is YES for some
9-tuple if and only if G contains a realisation of B4.
Let us prove that ΠB5 is NP-complete by a reduction of Γ

3 to ΠB5 . Since by Theorem 2.7, Γ
3 is NP-complete, this will

complete the proof. Let (G, x, y) be an instance of Γ 3. Prepare a new graph G′: add four vertices x′, x′′, y′, y′′ to G and add
four edges xx′, xx′′, yy′, yy′′. Since ∆(G) ≤ 3, it is easily seen that G contains a hole passing through x, y if and only if G′
contains a realisation of B5. �

The proof of the theorem below is omitted since it is similar to the proof of Theorem 3.1.

Theorem 3.2. There is an O(n14)-time algorithm for ΠB6 but ΠB7 is NP-complete.

3.2. Induced subdivisions of K5

Here, we study the problem of deciding whether a graph contains an induced subdivision of K5. More precisely, we put:
sK5 =

(
{a, b, c, d, e},∅,

(
{a,b,c,d,e}

2

))
.

Theorem 3.3. ΠsK5 is NP-complete.

Proof. We consider an instance (G, x, y) of Γ 3. Let us denote by x′, x′′ the two neighbours of x and by y′, y′′
the two neighbours of y. Let us build a graph G′ by adding five vertices a, b, c, d, e. We add the edges
ab, bd, dc, ca, ea, eb, ec, ed, ax′, bx′′, cy′′, dy′. We delete the edges xx′, xx′′, yy′, yy′′. We define a very similar graph G′′, the
only change being that we do not add edges cy′′, dy′ but edges cy′, dy′′ instead. See Fig. 15.
Now in G′ (and similarly G′′) every vertex has degree at most 3, except for a, b, c, d, e. We claim that G contains a hole

going through x and y if and only if at least one of G′,G′′ contains an induced subdivision of K5. Indeed, if G contains a
hole passing through x, x′, y′, y, y′′, x′′ in that order then G′ obviously contains an induced subdivision of K5, and if the hole
passes in order through x, x′, y′′, y, y′, x′′ then G′′ contains such a subgraph. Conversely, if G′ (or symmetrically G′′) contains
an induced subdivision of K5 then a, b, c, d, emust be the vertices of the underlying K5, because they are the only vertices
with degree at least 4. Hence there is a path from x′ to y′ in G \ {x, y} and a path from x′′ to y′′ in G \ {x, y}, and consequently
a hole going through x, y in G. �
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Fig. 15. Graphs G′ and G′′ .

3.3. ΠB for small B’s

Here, we survey the complexityΠB when B has at most four vertices. By the remarks in the introduction, if |V | ≤ 3 then
Π(V ,D,F) is polynomial. Up to symmetries, we are left with twelve s-graphs on four vertices as shown below.
For the following two s-graphs, there is a polynomial algorithm using three-in-a-tree. The two algorithms are essentially

similar to those for thetas and pyramids (see Fig. 2). See [5] for details.

The next two s-graphs yield an NP-complete problem:

For the next seven graphs on four vertices, we could not get an answer:

For the last graph represented below, it was proved recently by Trotignon and Vušković [11] that the problem can be solved
in time O(nm), using a method based on decompositions.

In conclusion we would like to point out that, except for the problem solved in [11], every detection problem associated
with an s-graph for which a polynomial time algorithm is known can be solved either by using three-in-a-tree or by some
easy brute-force enumeration.
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