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For planar graphs, we consider the problems of list edge coloring and list total coloring. Edge coloring is the problem
of coloring the edges while ensuring that two edges that are adjacent receive different colors. Total coloring is the
problem of coloring the edges and the vertices while ensuring that two edges that are adjacent, two vertices that are
adjacent, or a vertex and an edge that are incident receive different colors. In their list extensions, instead of having
the same set of colors for the whole graph, every vertex or edge is assigned some set of colors and has to be colored
from it. A graph is minimally edge or total choosable if it is list ∆-edge-colorable or list (∆ + 1)-total-colorable,
respectively, where ∆ is the maximum degree in the graph.

It is already known that planar graphs with ∆ ≥ 8 and no triangle adjacent to a C4 are minimally edge and total
choosable (Li Xu 2011), and that planar graphs with ∆ ≥ 7 and no triangle sharing a vertex with a C4 or no triangle
adjacent to a Ck (∀3 ≤ k ≤ 6) are minimally total colorable (Wang Wu 2011). We strengthen here these results and
prove that planar graphs with ∆ ≥ 7 and no triangle adjacent to a C4 are minimally edge and total choosable.
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1 Introduction
We consider simple, connected graphs. A k-edge-coloring of a graph G is a coloring of the edges of
G with k colors such that two edges that are adjacent receive distinct colors. We define χ′(G) as the
smallest k such that G admits a k-edge-coloring. An extension of the problem of edge coloring is the
list edge coloring, defined as follows. For any list assignment L : E → P(N), a graph G = (V,E)
is L-edge-colorable if there exists an edge coloring of G such that the color of every edge (u, v) ∈ E
belongs to L(u, v). A graph G = (V,E) is said to be list k-edge-colorable (or k-edge-choosable) if G is
L-edge-colorable for any list assignment L such that |L(u, v)| ≥ k for any edge (u, v) ∈ E. We define
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χ′`(G) as the smallest k such that G is k-edge-choosable. A k-total-coloring of a graph G = (V,E) is
a coloring of its edges and vertices with k colors such that two elements of V ∪ E that are adjacent or
incident receive distinct colors. The definitions naturally extend to list total coloring, and χ′′` (G).

Note that for any graph G, we have χ′`(G) ≥ χ′(G) ≥ ∆(G) and χ′′` (G) ≥ χ′′(G) ≥ ∆(G) + 1,
where ∆(G) denotes the maximum degree of a vertex in G. The first parts of the two inequalities are both
conjectured to be equalities (the former is the List Coloring Conjecture, the latter appears in Borodin et al.
(1997)).

Sufficient conditions for all these inequalities to be actually equalities have been extensively studied.
We say that a graph is minimally edge or total choosable if it is ∆(G)-edge-choosable or (∆(G) + 1)-
total-choosable, respectively. For the planar graph case, the best known result is that when ∆(G) ≥ 12, a
planar graph G is minimally edge- and total-choosable, as proved by Borodin et al. (1997). Note that no
such result can be hoped for in the case of planar graphs with very small maximum degree, as the cycle
on five vertices and the clique on four vertices with a subdivided edge show for maximum degree 2 and
3, respectively. Similarly, Vizing (1965) gave examples of planar graphs with maximum degree ∆ = 4, 5
that are not ∆-edge-colorable (thus not ∆-edge-choosable), though he conjectured that no such graph
exists for ∆(G) = 6. This conjecture remains widely open.

For k ≥ 3, a cycle of length k (resp. at most k) is denoted Ck (resp. Ck− ). Two cycles are said to
be incident if they share at least one vertex, and adjacent if they share at least one edge. When adding
restrictions on the cycles, for example Hou et al. (2006), Lu et al. (2013) and Li and Xu (2011) (respec-
tively) proved that planar graphs with ∆(G) ≥ 7 and no C4 or no two adjacent C4− , or with ∆(G) ≥ 8
and no triangle adjacent to a C4 are minimally edge- and total-choosable. Regarding total coloring only,
Wang and Wu (2011) that planar graphs with ∆(G) ≥ 7 and no triangle incident to a C4 or no triangle
adjacent to a Ck (k ∈ {3, 4, 5, 6}) are minimally total-choosable.

Here we strengthen these results by proving that:

Theorem 1 Every planar graph with ∆(G) ≥ 7 and no triangle adjacent to aC4 satisfies χ′`(G) = ∆(G)
and χ′′` (G) = ∆(G) + 1.

Consequently, every planar graph with maximum degree ∆ ≥ 7 and no triangle sharing an edge with a
cycle of length four is ∆-edge-choosable and (∆ + 1)-total-choosable. If the List Coloring Conjecture is
true, then, by a theorem of Sanders and Zhao (2001), it should hold that every planar graph with maximum
degree ∆ ≥ 7 is ∆-edge-choosable, with no condition on the cycles. However, even in the weaker setting
where (∆ + 1) colors are allowed, this remains open, and the case ∆ ≥ 8 has only recently been solved
by Bonamy (2015).

In Sections 2 and 3, we introduce the method and terminology. In Sections 4 and 5, we prove in two
steps Theorem 1, with the discharging methods described in Section 3.
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2 Method
The discharging method was introduced in the beginning of the 20th century. It has been used by Appel
et al. (1977b) and Appel et al. (1977a) to prove the celebrated Four Color Theorem.

We prove Theorem 1 using a discharging method, as follows. A graph is minimal for a property if it
satisfies this property but none of its proper subgraphs does. The first step is to set an integer k ≥ 7
and consider a minimal counter-example G (i.e. a graph G such that ∆(G) ≤ k and χ′`(G) > k or
χ′′` (G) > k + 1, every proper subgraph of which is k-edge-choosable and (k + 1)-total-choosable), and
prove it cannot contain some configurations. To that purpose, we assume by contradiction that G contains
one of the configurations. We consider a particular subgraph H of G. For any list assignment L on the
edges of G, with |L(e)| ≥ k for every edge e, we L-edge-color H by minimality. We show how to
extend the L-edge-coloring of H to G, a contradiction. We argue that, except in a well-specified case, the
same proof works for L-total-coloring with any list assignment L on the edges and vertices of G, with
|L(e)| ≥ k + 1 and |L(v)| ≥ k + 1 for every edge e and vertex v.

The second step is to prove that a connected planar graph on at least two vertices with ∆ ≤ k that does
not contain any of these configurations nor a triangle adjacent to a C4 does not satisfy Euler’s Formula.
To that purpose, we consider a planar embedding of the graph. We assign to each vertex its degree minus
six as a weight, and to each face two times its degree minus six. We apply discharging rules to redistribute
weights along the graph with conservation of the total weight. As some configurations are forbidden, we
can prove that after application of the discharging rules, every vertex and every face has a non-negative
final weight. This implies that

∑
v(d(v) − 6) +

∑
f (2d(f) − 6) = 2 × |E(G)| − 6 × |V (G)| + 4 ×

|E(G)|−6×|F (G)| ≥ 0, a contradiction to Euler’s Formula that |E|−|V |−|F | = −2. Hence a minimal
counter-example cannot exist.

3 Terminology
Let k ≥ 7.

In the figures, we draw in black a vertex that has no other neighbor than the ones already represented,
in white a vertex that might have other neighbors than the ones represented. When there is a label inside
a white vertex, it is an indication on the number of neighbors it has. The label ’i’ means ”exactly i neigh-
bors”, the label ’i+’ (resp. ’i−’) means that it has at least (resp. at most) i neighbors. The same goes for
faces. Note that the white vertices may coincide with other vertices.

Given a plane graph (i.e. a planar graph with its embedding) and a face f = (u, v, w, x), we say w
is the vertex opposite to u in f . If there is a face (t, u1, v, u2) with d(t) = 2 and d(v) = 3, we say a
neighbor w of u1 is the (v, u1)-support of t if the sequence (t, v, v1, v2, . . . , vp−1, vp = w) of consecutive
neighbors of u1 contains only vertices of degree 3 except for t, and any two consecutive neighbors of the
sequence are part of the boundary of a face of degree 4 that contains u1, while the edge (u1, w) belongs
to a face of degree at least 5, or to a face of degree 4 with a vertex of degree at least 4 opposite to w (see
Figure 1). Given t, v and u1, at most one vertex can satisfy this property. Note that v can itself be the
(v, u1)-support of t, and that it can even be also the (v, u2)-support of t. Note that, by definition, if w is
the (v, u1)-support of t, then the edge (u1, w) is incident, on one side, to either a face of degree at least 5,
or to a face of degree 4 where the vertex opposite to w is of degree at least 4, and, on the other side, to a
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face of degree 4 where the vertex opposite to w is of degree 3. Consequently, a vertex cannot be support
more than twice, as a support vertex is of degree 3.
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u1

t

u2 v

x1

v1

v2

x2

The vertex v2 is the (v, u1)-support of
t.

u1

t

u2

v

4+

5+

The vertex v is both the (v, u1)-support
and the (v, u2)-support of t.

Fig. 1: Examples of supports.

4 Forbidden Configurations
A constraint of an element u ∈ V ∪E is an already colored element of V ∪E that is adjacent or incident
to u.

We define configurations (C1) to (C7) (see Figure 2). Configurations (C1), (C4) and (C7) are standard.
Configurations (C2) and (C3) follow from the theorem statement. Configuration (C5) was introduced by
Cole et al. (2007), and we introduce Configuration (C6).

• (C1) is an edge (u, v) with d(u) + d(v) ≤ k + 1 and d(u) ≤ bk2 c.

• (C2) is a cycle (u, v, w, x) such that (u,w) is a chord.

• (C3) is a cycle (u, v, w, x, y) such that (w, y) is a chord.

• (C4) is a cycle (u1, v1, ..., up, vp), p ≥ 2 where ∀i, d(vi) = 2.

• (C5) is a vertex v1 with d(v1) = 2 such that, for u and x1 its two neighbors, there is a path
(v1, x1, v2, . . . , vp, xp, vp+1) (p ≥ 1) such that ∀i, vi is adjacent to u, with ∀ 2 ≤ i ≤ p, d(vi) = 3,
and d(vp+1) = 2.

• (C6) is a vertex v1 with d(v1) = 2 such that, for u and x1 its two neighbors, there is a cycle
(x1, v2, x2, . . . , xp−1, vp) such that ∀i, vi is adjacent to u, and ∀i ≥ 2, d(vi) = 3.

• (C7) is a vertex u with d(u) = 4 that has at least two neighbors u1 and u2 with d(u1) = d(u2) = 4.
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Fig. 2: Forbidden configurations.

Lemma 1 IfG is a minimal planar graph such that ∆(G) ≤ k, no triangle is adjacent to a cycle of length
four, and χ′′` (G) > k + 1 or χ′`(G) > k, then G cannot contain any of Configurations (C1) to (C7).

The remainder of this section will provide the proof of this lemma. First note that in the case of list total
coloring, any vertex v in G with d(v) ≤ k

2 can be colored no matter the coloring of its incident edges and
adjacent vertices. Except in the case of (C7), which we deal with appropriately in Claim 7, every edge we
have to color is incident to a vertex of degree at most k

2 , and every vertex we have to color is of degree
≤ k

2 . Consequently, except for (C7), it is safe to consider the problem of list edge coloring only. Indeed,
in the case of list total coloring, we can discolor every colored vertex of degree ≤ k

2 , then every edge we
have to color has an extra color and at most one extra constraint, and every vertex we have to color will
still have enough choices remaining at the end.

Claim 1 G cannot contain (C1).

Proof: Using the minimality of G, we color G \ {(u, v)}. Since ∆(G) ≤ k, and d(u) + d(v) ≤ k + 1,
the edge (u, v) has at most k − 1 constraints. There are k colors, so we can color (u, v), thus extending
the coloring of G \ {(u, v)} to G. 2

Claim 2 G cannot contain (C2).

Proof: The triangle (u, v, w) shares two edges with the cycle (u, v, w, x) of length 4. 2

Claim 3 G cannot contain (C3).
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Proof: The triangle (u, x, y) shares an edge with the cycle (u, v, w, x) of length 4. 2

Claim 4 G cannot contain (C4).

Proof: Using the minimality of G, we color G \ {vi}1≤i≤p. Every edge (ui, vi) or (vi, ui+1) (subscript
taken modulo p) has at most k − 2 constraints, so there are at least 2 colors available for each of them.
Since even cycles are 2-choosable, we can color the (ui, vi)’s and (vi, ui+1)’s. Then we can extend the
coloring of G \ {vi}1≤i≤p to G. 2

Claim 5 G cannot contain (C5).

Proof: Let L : E → P(N) be a color assignment such that ∀e ∈ E, |L(e)| ≥ k and such that G is not
L-colorable. Using the minimality of G, we L-color G \ {vi|1 ≤ i ≤ p + 1}. We denote by L′(e) the
remaining available colors for every edge e that is not colored yet.

Every edge e incident to u and not colored yet has at most d(u)−(p+1) ≤ k−(p+1) constraints, thus
|L′(e)| ≥ p+ 1. Every edge e that is not incident to u and is not colored yet has at most k− 2 constraints,
thus |L′(e)| ≥ 2. We consider the worst case, i.e. that these inequalities are actually equalities.

We first consider the case where L′(v1, x1) 6⊂ L′(u, v1) or L′(vp+1, xp) 6⊂ L′(u, vp+1). Consider
w.l.o.g. L′(v1, x1) 6⊂ L′(u, v1). Color (v1, x1) with a color that does not belong to L′(u, v1), and color
arbitrarily (x1, v2), . . . , (xp, vp+1), successively. Then at least p − 1 colors remain for each (u, vi) with
2 ≤ i ≤ p, while p colors remain for (u, vp+1) and p+ 1 for (u, v1) by assumption. We color arbitrarily
(u, v2), . . . , (u, vp+1), in that order, and finally (u, v1): then G is L-colorable, a contradiction. Thus we
can assume from now on that L′(v1, x1) ⊂ L′(u, v1) and L′(vp+1, xp) ⊂ L′(u, vp+1). We prove the
following.

(1)

We can color {(u, vi), (vi, xi), (xi, vi+1)|1 ≤ i ≤ p} \ {u, v1} in such a way that
for L′′ the list assignment of remaining available colors for the edges uncolored yet
(here (u, v1) and (u, vp+1)), we have L′′(u, v1) 6= L′′(u, vp+1) if |L′′(u, v1)| =
|L′′(u, vp+1| = 1.

Proof. We consider two cases depending on whether L′(u, v1) = L′(u, vp+1).

• Assume L′(u, v1) 6= L′(u, vp+1).
Let a be a color in L′(u, v1) \ L′(u, vp+1). Color (v1, x1) with a color other than a, then color
successively (x1, v2), . . . , (xp, vp+1), (u, v2), . . . , (u, vp). Now |L′′(u, v1)| ≥ 1, |L′′(u, vp+1)| ≥
1 and L′′(u, v1) 6= L′′(u, vp+1) if |L′′(u, v1)| = |L′′(u, vp+1)| = 1. Indeed, if |L′′(u, vp+1)| = 1
then, since a 6∈ L′(u, vp+1), the color a does not appear on the edges (x1, v2), . . . , (xp, vp+1),
(u, v2), . . . , (u, vp). Together with the fact that (v1, x1) was purposely not colored with a and these
are the only uncolored edges around (u, v1), we have that a ∈ L′′(u, v1) \ L′′(u, vp+1).

• Assume L′(u, v1) = L′(u, vp+1).
We color (v1, x1), (x1, v2), . . . , (xp, vp+1) as though it were a cycle (i.e. (v1, x1) and (xp, vp+1)
have to receive different colors): it is possible since even cycles are 2-choosable. Then we color
arbitrarily the (u, vi)’s with 2 ≤ i ≤ p. It follows that L′′(u, v1) 6= L′′(u, vp+1) if |L′′(u, v1)| =
|L′′(u, vp+1)| = 1. Indeed, L′(u, v1) = L′(u, vp+1), and for S the set of colors on the edges
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(u, v2), . . . , (u, vp), for α and β the colors of (v1, x1) and (vp+1), we have L′′(u, v1) = L′(u, v1)\
(S ∪ α) and L′′(u, vp+1) = L′(u, v1) \ (S ∪ β). If |L′′(u, v1)| = |L′′(u, vp+1)| = 1, then
{α, β} ∩ S = ∅. Since α 6= β, this implies L′′(u, v1) 6= L′′(u, vp+1).

3

By (1), we color {(u, vi), (vi, xi), (xi, vi+1)|1 ≤ i ≤ p} \ {u, v1} in such a way that, for L′′ the list of
remaining available colors for (u, v1) and (u, vp+1), we have L′′(u, v1) 6= L′′(u, vp+1) if |L′′(u, v1)| =
|L′′(u, vp+1| = 1. We color arbitrarily (u, v1) and (u, vp+1), starting with the one with fewest avail-
able colors if any, thus extending the L-coloring of G \ {vi|1 ≤ i ≤ p + 1} to an L-coloring of G, a
contradiction. 2

We first prove an intermediary lemma which will be instrumental in the proof of Claim 6.

Lemma 2 Let Γ be K2,3, and y (resp. z) be a vertex of degree 3 (resp. 2) in Γ. The graph Γ is L1-edge-
colorable for any list assignment L1 of 3 colors to each of the two edges incident to z and 2 colors to each
of the other edges, where the two edges incident to y but not to z do not receive the two same colors.

Proof: We denote a, b, c the three edges incident to y, where c is the edge (y, z), and d (resp. e, f ) the
other edge incident to c (resp. b, a). We have |L1(a)| = |L1(b)| = |L1(e)| = |L1(f)| = 2 and |L1(c)| =
|L1(d)| = 3, with L1(a) 6= L1(b). We consider different cases depending on the list intersections. In
the first three cases, we do not use the fact L(a) 6= L(b), which allows us to consider in these cases the
problem to be symmetric w.r.t. (a, b, c) and (f, e, d).

• Assume L1(a) ∩ L1(e) 6= L1(b) ∩ L1(f).
W.l.o.g., assume that (L1(a) ∩ L1(e)) \ (L1(b) ∩ L1(f)) 6= ∅ and take an element α of it. Color
a and e with α. One of b and f still has 2 colors available. Assume w.l.o.g. it is b. Then we color
successively f, d, c and b.

• Assume L1(a) ∩ L1(e) = L1(b) ∩ L1(f) and L1(a) ∪ L1(e) 6= L1(b) ∪ L1(f).
Then assume w.l.o.g. L1(a) is not contained in L1(b)∪L1(f). Color a with α 6∈ (L1(b)∪L1(f)).
Then either L1(e) = L1(f) and we color d with β 6∈ L(f), then color successively c, b, e and f .
Or L1(f) 6= L1(e): we color f with a color not in L1(e), and we can color (b, c, d, e) since even
cycles are 2-choosable.

• AssumeL1(a)∩L1(e) = L1(b)∩L1(f), L1(a)∪L1(e) = L1(b)∪L1(f) andL1(a)∪L1(b) 6⊆ L1(c)
or L1(e) ∪ L1(f) 6⊆ L1(d).
Then assume w.l.o.g. L1(a) ∪ L1(b) 6⊆ L1(c) and there is α ∈ L1(a) \ L1(c). Color a with
α. If α 6∈ L1(b), color f, e, b, d and c, and similarly if α 6∈ L1(f): color b, e, f, d and c. If
α ∈ L1(b)∩L1(f), then α ∈ L1(e) by assumption. Then we color e with α, and color successively
b, f, d and c.

• Assume L1(a)∩L1(e) = L1(b)∩L1(f), L1(a)∪L1(e) = L1(b)∪L1(f), L1(a)∪L1(b) ⊆ L1(c)
and L1(e) ∪ L1(f) ⊆ L1(d).
Then we must have L1(a) = {1, 2}, L1(b) = {1, 3} and L1(c) = {1, 2, 3}, and for some α 6∈
{2, 3}, L1(f) = {α, 2}, L1(e) = {α, 3} and L1(d) = {α, 2, 3}. Then we color a with 1, b with 3,
c with 2, d with 3, e with α and f with 2.
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Thus Γ is L1-colorable. 2

Claim 6 G cannot contain (C6).

Proof: Let L : V ∪E → P(N) (resp. E → P(N)) be a color assignment such that ∀a ∈ V ∪E, |L(a)| ≥
k + 1 (resp. ∀a ∈ E, |L(a)| ≥ k) and such that G is not L-colorable. Using the minimality of G, we
L-color G \ {vi|1 ≤ i ≤ p}. Note that d(vi) ≤ 3 < k

2 for all 1 ≤ i ≤ p, so coloring the edges is enough.
We denote by L′(e) the remaining available colors for every edge e that is not colored yet.

Every edge e incident to u and not colored yet has at most d(u)−p+1 (resp. d(u)−p) constraints, thus
|L′(e)| ≥ p. Every edge e incident to x1 and not colored yet has at most d(x1)− 3 + 1 (resp. d(x1)− 3)
constraints, thus |L′(e)| ≥ 3. Every edge e that is not incident to u nor x1 and is not colored yet has at
most k−2+1 (resp. k−2) constraints, thus |L′(e)| ≥ 2. In the worst case, these inequalities are actually
equalities. We first prove the following.

(2)
We can color {(u, vi), (vi, xi), (xi, vi+1)|2 ≤ i ≤ p−1}\{u, v2} in such a way that
for L′′ the list assignment of remaining available colors for the edges uncolored yet,
we have L′′(x1, v2) 6= L′′(x1, vp) if |L′′(x1, v2)| = |L′′(x1, vp)| = 2.

Proof. We consider two cases depending on whether L′(x1, v2) = L′(x1, vp).

• Assume L′(x1, v2) 6= L′(x1, vp).
Let a ∈ L′(x1, v2) \ L′(x1, vp), and color (v2, x2) with a color distinct from a. Color successively
(x2, v3), . . . , (xp−1, vp), then (u, v3), . . . , (u, vp−1). Now a ∈ L′′(x1, v2) \ L′′(x1, vp) unless
|L′′(x1, vp)| ≥ 3.

• Assume L′(x1, v2) = L′(x1, vp).
We color (v2, x2), (x2, v3), . . . , (xp−1, vp) as though it were a cycle (i.e. (v2, x2) and (xp−1, vp)
have to receive different colors): it is possible since even cycles are 2-choosable. Then we color ar-
bitrarily the (u, vi)’s with 3 ≤ i ≤ p− 1. It follows that L′′(x1, v2) 6= L′′(x1, vp) if |L′′(x1, v2)| =
|L′′(x1, vp)| = 2.

3

By (2), we color {(u, vi), (vi, xi), (xi, vi+1)|2 ≤ i ≤ p− 1} \ {u, v2} in such a way that for L′′ the list
assignment of remaining available colors for the edges uncolored yet, we have L′′(x1, v2) 6= L′′(x1, vp)
if |L′′(x1, v2)| = |L′′(x1, vp)| = 2. Then, we can assume |L′′(x1, v2)| = |L′′(x1, vp)| = |L′′(u, v2)| =
|L′′(u, vp)| = 2, |L′′(u, v1)| = |L′′(v1, x1)| = 3 and L′′(x1, v2) 6= L′′(x1, vp). Then we color G by
Lemma 2. 2

Claim 7 G cannot contain (C7).

Proof: This is the only situation where list total coloring requires a special argument. The case of list edge
coloring is straightforward: we color G \ {(u, u1)}, it has at most 6 adjacent edges, and at least 7 colors
in its list, so we can color it. From now on, we consider specifically the case of list total coloring. Using
the minimality of G, we color G \ {(u, u1), (u, u2)}. We discolor u, u1 and u2. Let L′ be the remaining
available colors for the edges and vertices that are not colored yet. Since k ≥ 7 and all the lists are of
size at least k + 1, we have in the worst case |L′(u1)| = |L′(u2)| = 2, |L′(u, u1)| = |L′(u, u2)| = 3 and
|L′(u)| = 4. We consider two cases depending on L′(u1) and L′(u, u2).
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• Assume there exists a ∈ L′(u1) ∩ L′(u, u2). We color u1 and (u, u2) with a, then we color u2,
(u, u1) and u.

• Assume L′(u1) ∩ L′(u, u2) = ∅. Then |L′(u1) ∪ L′(u, u2)| = 5 > |L′(u)|. So there exists
a ∈ L′(u1)∪L′(u, u2)\L′(u). Assume a ∈ L′(u1) (resp. a ∈ L′(u, u2)). Color u1 (resp. (u, u2))
with a, then color u2, (u, u1), (u, u2) (resp. u1) and u.

Thus the coloring can be extended to u, u1, u2, (u, u1), (u, u2), a contradiction. 2

5 Discharging rules
Given a planar map, we design discharging rules R1.1, R1.2, R1.3, R1.4, R2.1, R2.2, R3.1, R3.2, R4 and
Rg (see Figure 3). We also use a so-called common pot which is empty at the beginning, receives weight
from some vertices and gives weight to some others.
Rules on faces:

For any face f of degree at least 4,

• Rule R1 is when f is incident to a vertex u of degree d(u) ≤ 3.

– Rule R1.1 is when d(f) = 4, and for v the vertex incident to f that is not consecutive to u on
the boundary of f , we have d(v) ≤ 3. Then f gives 1 to u.

– Rule R1.2 is when d(f) = 4, and for v the vertex incident to f that is not consecutive to u on
the boundary of f , we have d(v) ≥ 4. Then f gives 3

2 to u.

– Rule R1.3 is when d(f) ≥ 5 and d(u) = 3 or d(u) = 2 and the two neighbors of u are not
adjacent. Then f gives 3

2 to u.

– Rule R1.4 is when d(f) ≥ 6 and d(u) = 2 such that its two neighbors are adjacent. Then f
gives 5

2 to u.

• Rule R2 is when f is incident to a vertex u of degree 4 ≤ d(u) ≤ 5.

– Rule R2.1 is when d(f) = 4 or d(u) = 5. Then f gives 1
2 to u.

– Rule R2.2 is when d(f) ≥ 5 and d(u) = 4. Then f gives 1 to u.

• Rule R3 is when f contains an edge such that there is a vertex u of degree d(u) = 2 that is adjacent
to its two endpoints. Then f gives 1

2 to u.

Note that if a vertex u appears more than once on the boundary of f , the rules are applied as many times
as u appears on the boundary.
Rules on vertices:

• Rule R4 states that for any quadruple (x, u, u1, v) such that x is the (v, u1)-support of u, x gives
1
4 to u. (Note that R4 can be applied twice for the same x and u if there are two different such
quadruples involving them).

• Rule Rg states that for any vertex x of degree k, x gives 1 to the common pot, and every vertex of
degree 2 draws 1 from it.
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Fig. 3: Discharging rules R1, R2 and R3.

Lemma 3 A graph G with ∆(G) ≤ k that does not contain Configurations (C1) to (C7) is not planar.

Proof: Toward a contradiction, suppose that G is planar. Then it admits an embedding in the plane with
no crossing edges. We attribute to each vertex u a weight of d(u) − 6, and to each face a weight of
2d(f)− 6, and apply discharging rules R1, R2, R3, R4 and Rg .

Since Configuration (C1) does not appear, a vertex of degree 2 is adjacent to two vertices of degree k.
Furthermore, since Configuration (C4) does not appear, the subgraph induced in G by the edges incident
to a vertex of a degree 2 is a forest, both its neighbors are of degree k. Thus there are at least as many
vertices of degree k as there are vertices of degree 2, so Rg is valid: the common pot does not distribute
more weight than it receives.

We first prove the following useful lemma:
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Lemma 4 In G, every vertex v0 with d(v0) = 2 that belongs to a face f0 = (u1, v1, u2, v0) with d(v1) =
3 admits a (v1, u1)-support and a (v1, u2)-support.

Proof: Assume by contradiction that v0 has no (v1, u1)-support. Let (f0, f1, . . . , fp) be a maximal se-
quence of distinct faces of degree 4 where fi = (u1, vi+1, xi, vi) (here x0 = u2) and d(vi+1) ≤ 3. Note
that d(vi+1) = 3 for every 0 ≤ i ≤ p since Configurations (C5) and (C6) do not appear. Let f ′ be the
other face to which the edge (u1, vp+1) belongs. We have d(f ′) ≥ 4 since G does not contain Config-
uration (C3). By the contradiction assumption, we have f ′ = (u1, vp+1, xp+1, vp+2) with d(vp+2) ≤ 3
as vp+1 would otherwise be a (v1, u1)-support of v0. Since p was chosen to be maximal, we must have
f ′ = f0, a contradiction to the fact that Configuration (C6) does not appear in G. 2

We show that all the vertices have a weight of at least 0 in the end.

Let u be a vertex of G. Since Configuration (C1) does not appear, d(u) ≥ 2. We consider different
cases depending on the value of d(u).

1. d(u) = 2.
We consider two cases depending on whether u is incident to a triangle.

(a) Assume u belongs to a triangle (u, v, w).
Let f1 and f2 be the two faces adjacent to (u, v, w), where f1 is the face incident to u. Then,
in order to avoid Configurations (C2) and (C3), we must have d(f1) ≥ 6 and d(f2) ≥ 5. So,
by Rules R1.4, R3 and Rg , u receives 5

2 from f1, 1
2 from f2 and 1 from the common pot.

Since u has an initial weight of −4, gives nothing and receives 4, it has a non-negative final
weight.

(b) Otherwise, let f1 and f2 be the two faces to which u belongs, with d(f1), d(f2) ≥ 4.
For each fi ∈ {f1, f2}, we have three cases:

i. Either fi = (u, u1, v, u2), with d(v) ≤ 3.
Then d(v) = 3 since Configuration (C4) does not appear, and by Lemma 4, u has a
(v, u1)-support, and a (v, u2)-support. Thus, by Rules R1.1 and R4, u receives 1 from fi
and 1

4 from each of its (v, )-supports, so u receives 3
2 on the side of fi.

ii. Or fi = (u, u1, v, u2), with d(v) ≥ 4.
Then, by Rule R1.2, u receives 3

2 on the side of fi.
iii. Or d(fi) ≥ 5.

Then, by Rule R1.3, u receives 3
2 on the side of fi.

Then u receives 2× 3
2 from f1 and f2, and it receives 1 from the common pot. Since u has an

initial weight of −4, gives nothing and receives 4, it has a non-negative final weight.

2. d(u) = 3.
We consider three cases depending on the faces u is incident to.

(a) Assume u belongs to a triangle (u, v, w).
Let f1 and f2 be the two other faces that are incident to u. To avoid Configurations (C2) and
(C3), we must have d(f1), d(f2) ≥ 5. So u gives nothing as it cannot be a support. By Rule
R1.3, u receives 2× 3

2 , has an initial weight of −3 and gives nothing, so it has a non-negative
final weight.
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(b) Assume u belongs to three faces f1 = (u, u1, v1, u2), f2 = (u, u2, v2, u3) and f3 = (u, u3, v3,
u1), with d(v1), d(v2), d(v3) ≤ 3.
Then u cannot be a support so it gives nothing. Vertex u has an initial weight of −3, gives
nothing, and receives 3× 1 by Rule R1.1, so it has a non-negative final weight.

(c) Otherwise, u belongs to a face f1 such that either d(f1) ≥ 5 or f1 = (u, u1, v1, u2) with
d(v1) ≥ 4.
Then u has an initial weight of −3, gives at most 2 × 1

4 by R4 as a vertex cannot be support
more than twice, and receives at least 3

2 + 2 × 1 by Rule R1, so it has a non-negative final
weight.

3. d(u) = 4.
We consider two cases depending on whether u is incident to a triangle.

(a) Assume u is incident to a triangle.
Then, since Configurations (C2) and (C3) do not appear, u is incident to two faces f1 and f2
such that d(f1), d(f2) ≥ 5. So u has an initial weight of −2, gives nothing, and receives at
least 2× 1 by Rule R2.2, so it has a non-negative final weight.

(b) Otherwise, u is incident to at least 4 faces of degree at least 4.
Then u has an initial weight of −2, gives nothing, and receives at least 4× 1

2 by Rule R2, so
it has a non-negative final weight.

4. d(u) = 5.
Since Configurations (C2) and (C3) do not appear, u is incident to (at least three and in particular)
two faces f1 and f2 such that d(f1), d(f2) ≥ 4. So u has an initial weight of −1, gives nothing,
and receives at least 2× 1

2 by Rule R2.1, so it has a non-negative final weight.

5. 6 ≤ d(u) ≤ k − 1.
Vertex u has a non-negative initial weight, gives nothing, receives nothing, so it has a non-negative
final weight.

6. d(u) = k.
Then u has an initial weight of at least 1, gives 1 to the common pot according to Rg and no other
rule applies, so it has a non-negative final weight.

So all the vertices have a non-negative final weight after application of the discharging rules. Let us
now prove that the same holds for the faces.

Let f be a face of G. We consider different cases depending on the value of d(f). Since Configuration
(C3) does not appear, f cannot give weight according to R3 if d(f) ≤ 4. Note also that since Configu-
ration (C1) does not appear in G, R3 can only be applied if the two endpoints of the edge are of degree
k.

1. d(f) = 3.
Then f has an initial weight of 0, gives nothing, receives nothing, so it has a non-negative final
weight.
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2. d(f) = 4.
Assume f = (u, v, w, x), where u has the minimum degree. We consider two cases depending on
d(u).

(a) d(u) ≤ 3.
Then, since Configuration (C1) does not appear, d(v), d(x) ≥ 6, and f gives nothing to them.
Face f has an initial weight of 2. It gives at most 2 × 1 to u and w by Rule R1.1, or at most
3
2 + 1

2 to u and w by Rules R1.2 and R2.1 (depending on whether d(w) ≤ 3). So it has a
non-negative final weight.

(b) d(u) ≥ 4.
Then f has an initial weight of 2, gives at most 4× 1

2 to u, v, w and x by Rule R2.1, so it has
a non-negative final weight.

3. d(f) = 5.
We take f = (u, v, w, x, y), where u has minimum degree, and d(w) ≤ d(x). Face f has an initial
weight of 4. We consider different cases depending on d(u).

(a) d(u) ≤ 3.
Then, since Configuration (C1) does not appear in G, d(v), d(y) ≥ 6. We are in one of the
following three cases.

i. d(w) ≤ 3.
Then, since Configuration (C1) does not appear in G, d(x) ≥ 6. So, f gives 3

2 both to u
and w by Rule R1.3, and may give 1

2 to a vertex of degree 2 adjacent to both x and y, by
Rule R3. So f has an initial weight of 4, gives at most 7

2 , and has a non-negative final
weight.

ii. 4 ≤ d(w) ≤ 5.
Then f gives 3

2 to u by Rule R1.3, at most 1 to w by Rule R2, and may give 1 to x by
Rule R2 or 1

2 to a vertex of degree 2 adjacent to both x and y by Rule R3. So f has an
initial weight of 4, gives at most 7

2 , and has a non-negative final weight.
iii. d(w) ≥ 6.

Then f gives 3
2 to u by Rule R1.3, and may give 1

2 to a vertex of degree 2 adjacent to
both v and w, both w and x, or both x and y, respectively, by Rule R3. So f has an initial
weight of 4, gives at most 3

2 + 3× 1
2 = 3, and has a non-negative final weight.

(b) d(u) ≥ 4.
Then, since Configuration (C7) does not appear in G, there are at most 3 vertices of degree 4
in f . So f has an initial weight of 4, gives at most 3 × 1 + 2 × 1

2 = 4, by Rules R2.2, R2.1

and R3, and has a non-negative final weight.

4. d(f) = 6.
Face f has an initial weight of 6, so it must not give more than 6 away. Since Configuration (C3)
does not appear in G, R1.4 cannot apply more than once. We consider four cases depending on
the number N of vertices of degree at most 3 on the boundary of f . Note that N ≤ 3 since
Configuration (C1) does not appear in G.

• If N = 0, then by Rules R2 and R3, f gives at most d(f)× 1 ≤ 6 away.
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• If N = 1, then since Configuration (C1) does not appear in G, f is incident to at most two
vertices of degree 4. Thus, by Rule R1, f gives at most 5

2 to its only neighbor of degree at
most 3, and by Rules R2 and R3, f gives at most 4 × 1

2 extra weight. So f gives at most
5
2 + 3 ≤ 6 away.

• If N = 2, then since Configuration (C1) does not appear in G, f is incident to at most one
neighbor of degree 4. Thus, by Rule R1 and since R1.4 is applied at most once, f gives at
most 5

2 + 3
2 to its two incident vertices of degree at most 3, and by Rules R2 and R3, f gives

at most 1 extra weight. So f gives at most 4 + 1 ≤ 6 away.

• Otherwise, N = 3. Since Configuration (C1) does not appear in G, f is incident to no vertex
of degree 4, and R3 cannot be applied. Thus, by Rule R1 and since R1.4 is applied at most
once, f gives at most 5

2 + 2× 3
2 to its three incident vertices of degree at most 3, and neither

R2 nor R3 apply. So f gives at most 11
2 ≤ 6 away.

5. d(f) ≥ 7.
In the worst case, f gives 5

2 ×b
d(f)
2 c by R1.4, and it may give an additional 1

2 by R3 if d(f) is odd,
so f has a non-negative final weight. It can easily be checked, as follows.

(a) If d(f) = 7.
Then 2d(f)− 6− (3× 5

2 + 1
2 ) = 0 ≥ 0

(b) If d(f) = 8.
Then 2d(f)− 6− (d(f)

2 ×
5
2 ) = 3

4d(f)− 6 ≥ 0

(c) Otherwise, d(f) ≥ 9.
Then 2d(f)− 6− (d(f)

2 ×
5
2 + 1

2 ) = 3
4d(f)− 13

2 ≥ 0.

Consequently, after application of the discharging rules, every vertex and every face of G has a non-
negative weight,

∑
v∈V (d(v)− 6) +

∑
f∈F (2d(f)− 6) ≥ 0. Therefore, G is not planar.

2

5.1 Conclusion

Proof of Theorem 1: Let Γ be a planar graph with no triangle adjacent to a cycle of length four, such
that ∆(Γ) ≥ 7, and Γ is not list edge ∆(Γ)-choosable (resp. list total (∆(Γ) + 1)-choosable). Graph
Γ has a subgraph G that is a minimal graph such that G is not list edge ∆(Γ)-choosable (resp. list total
(∆(Γ) + 1)-choosable). We set k = ∆(Γ) ≥ 7. As ∆(G) ≤ ∆(Γ) = k, by Lemma 1, graph G cannot
contain (C1) to (C7). Lemma 3 implies that G is not planar, thus Γ is not planar, a contradiction. 2
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