Contracting Graphs to Paths and Trees* Pinar Heggernes¹, Pim van 't Hof¹, Benjamin Lévêque², Daniel Lokshtanov³, and Christophe Paul² Department of Informatics, University of Bergen, N-5020 Bergen, Norway {pinar.heggernes.pim.vanthof}@ii.uib.no 2 CNRS, LIRMM, Université Montpellier 2, Montpellier, France {leveque.paul}@lirmm.fr ³ Dept. Computer Science and Engineering, University of California San Diego, USA dlokshtanov@cs.ucsd.edu **Abstract.** Vertex deletion and edge deletion problems play a central role in Parameterized Complexity. Examples include classical problems like FEEDBACK VERTEX SET, ODD CYCLE TRANSVERSAL, and CHORDAL Deletion. The study of analogous edge contraction problems has so far been left largely unexplored from a parameterized perspective. We consider two basic problems of this type: Tree Contraction and Path Contraction. These two problems take as input an undirected graph G on n vertices and an integer k, and the task is to determine whether we can obtain an acyclic graph or a path, respectively, by a sequence of at most k edge contractions in G. We present an algorithm with running time $4.98^k n^{O(1)}$ for Tree Contraction, based on a variant of the color coding technique of Alon, Yuster and Zwick, and an algorithm with running time $2^{k+o(\hat{k})} + n^{O(1)}$ for PATH CONTRACTION. Furthermore, we show that PATH CONTRACTION has a kernel with at most 5k+3 vertices, while Tree Contraction does not have a polynomial kernel unless NP ⊂ coNP/poly. We find the latter result surprising, because of the connection between Tree Contraction and Feedback Vertex Set, which is known to have a kernel with $4k^2$ vertices. #### 1 Introduction For a graph class Π , the Π -Contraction problem takes as input a graph G and an integer k, and the question is whether there is a graph $H \in \Pi$ such that G can be contracted to H using at most k edge contractions. In early papers by Watanabe et al. [29,30] and Asano and Hirata [2], Π -Contraction was proved to be NP-complete for several classes Π . The Π -Contraction problem fits into a wider and well studied family of graph modification problems, where vertex deletions and edge deletions are two other ways of modifying a graph. Π -Vertex Deletion and Π -Edge Deletion are the problems of deciding whether some graph belonging to graph class Π can be obtained from G by at most k vertex deletions or by at most k edge deletions, respectively. All of ^{*} Supported by the Research Council of Norway (project SCOPE, 197548/V30) and the French ANR (project AGAPE, ANR-09-BLAN-0159). D. Marx and P. Rossmanith (Eds.): IPEC 2011, LNCS 7112, pp. 55-66, 2012. [©] Springer-Verlag Berlin Heidelberg 2012 these problems are shown to be NP-complete for most of the interesting graph classes Π [25,31,32,33]. However, whereas Π -Vertex Deletion and Π -Edge Deletion have been studied in detail for several graph classes Π with respect to fixed parameter tractability (e.g., [3,5,10,17,19,21,22,23,26,28]), this has not been the case for Π -Contraction. Note that every edge contraction reduces the number of vertices of the input graph by one, which means that the parameter k of Π -Contraction is never more than n-1. Here we study Π -Contraction when Π is the class of acyclic graphs and when Π is the class of paths. Since edge contractions preserve the number of connected components, we may assume that the input graph is connected, justifying the names Tree Contraction and Path Contraction. Both problems are NP-complete [2,9]. We find these problems of particular interest, since their vertex deletion versions, widely known as Feedback Vertex Set and Longest Induced Path, are famous and well-studied. These two problems are known to be fixed parameter tractable and have polynomial kernels, when parameterized by the number of deleted vertices. The question whether a fixed parameter tractable problem has a polynomial kernel or not has attracted considerable attention during the last years, especially after the establishment of methods for proving non-existence of polynomial kernels, up to some complexity theoretical assumptions [6,7,8]. During the last decade, considerable effort has also been devoted to improving the parameter dependence in the running time of classical parameterized problems. Even in the case of a running time which is single exponential in k, lowering the base of the exponential function is considered to be an important challenge. For instance, the running time of FEEDBACK VERTEX SET has been successively improved from $37.7^k n^{O(1)}$ [18] to $10.57^k n^{O(1)}$ [15], $5^k n^{O(1)}$ [12], $3.83^k n^{O(1)}$ [11], and randomized $3^k n^{O(1)}$ [14]. In this paper, we present results along these established lines for Tree Con-TRACTION and PATH CONTRACTION. It is easy to see that if a graph G is contractible to a path or a tree (i.e., a graph with treewidth 1) with at most k edge contractions, then the treewidth of G is at most k+1. Consequently, when parameterized by k, fixed parameter tractability of TREE CONTRACTION and PATH CONTRACTION follows from the well known result of Courcelle [13], as both problems are expressible in monadic second order logic. However, this approach yields very unpractical algorithms whose running times involve huge functions of k. Here, we give algorithms with running time $2^{k+o(k)} + n^{O(1)}$ for PATH CONTRACTION, and $4.98^k n^{O(1)}$ for Tree Contraction. To obtain the latter result, we use a variant of the color coding technique of Alon, Yuster and Zwick [1]. Combined with a recent result of Cygan et al. [14], our results also imply a randomized algorithm for Tree Contraction with running time $4^{k+o(k)} n^{O(1)}$. Furthermore, we show that PATH CONTRACTION has a linear vertex kernel. On the negative side, we show that TREE CONTRACTION does not have a polynomial kernel, unless $NP \subseteq coNP/poly$. This is a contrast compared to the corresponding vertex deletion problem FEEDBACK VERTEX SET, which is known to have a quadratic kernel [27]. #### 2 Definitions and Notation All graphs in this paper are finite, undirected, and simple, i.e., do not contain multiple edges or loops. Given a graph G, we denote its vertex set by V(G) and its edge set by E(G). We also use the ordered pair (V(G), E(G)) to represent G. We let n = |V(G)|. Let G = (V, E) be a graph. The neighborhood of a vertex v in G is the set $N_G(v) = \{w \in V \mid vw \in E\}$ of neighbors of v in G. Let $S \subseteq V$. We write $N_G(S)$ to denote $\bigcup_{v \in S} N_G(v) \setminus S$. We say that S dominates a set $T \subseteq V$ if every vertex in T either belongs to S or has at least one neighbor in S. We write G[S] to denote the subgraph of G induced by S. We use shorthand notation G-vto denote $G[V \setminus \{v\}]$ for a vertex $v \in V$, and G-S to denote $G[V \setminus S]$ for a set of vertices $S \subseteq V$. A graph is connected if it has a path between every pair of its vertices, and is disconnected otherwise. The connected components of a graph are its maximal connected subgraphs. We say that a vertex subset $S \subseteq V$ is connected if G[S] is connected. A bridge in a connected graph is an edge whose deletion results in a disconnected graph. A cut vertex in a connected graph is a vertex whose deletion results in a disconnected graph. A graph is 2-connected if it has no cut vertex. A 2-connected component of a graph G is a maximal 2-connected subgraph of G. We use P_{ℓ} to denote the graph isomorphic to a path on ℓ vertices, i.e., the graph with ordered vertex set $\{p_1, p_2, p_3, \ldots, p_{\ell}\}$ and edge set $\{p_1p_2, p_2p_3, \ldots, p_{\ell-1}p_{\ell}\}$. We will also write $p_1p_2\cdots p_{\ell}$ to denote P_{ℓ} . A tree is a connected acyclic graph. A vertex with exactly one neighbor in a tree is called a *leaf*. A star is a tree isomorphic to the graph with vertex set $\{a, v_1, v_2, \ldots, v_s\}$ and edge set $\{av_1, av_2, \ldots, av_s\}$. Vertex a is called the *center* of the star. The contraction of edge xy in G removes vertices x and y from G, and replaces them by a new vertex, which is made adjacent to precisely those vertices that were adjacent to at least one of the vertices x and y. A graph G is contractible to a graph H, or H-contractible, if H can be obtained from G by a sequence of edge contractions. Equivalently, G is H-contractible if there is a surjection $\varphi: V(G) \to V(H)$, with $W(h) = \{v \in V(G) \mid \varphi(v) = h\}$ for every $h \in V(H)$, that satisfies the following three conditions: (1) for every $h \in V(H)$, W(h) is a connected set in G; (2) for every pair $h_i, h_j \in V(H)$, there is an edge in G between a vertex of $W(h_i)$ and a vertex of $W(h_j)$ if and only if $h_i h_j \in E(H)$; (3) $W = \{W(h) \mid h \in V(H)\}$ is a partition of V(G). We say that W is an H-witness structure of G, and the sets W(h), for $h \in V(H)$, are called witness sets of W. If a witness set contains more than one vertex of G, then we call it a *big* witness set; a witness set consisting of a single vertex of G is called *small*. We say that G is k-contractible to H, with $k \le n - 1$, if H can be obtained from G by at most k edge contractions. The next observation follows from the above. **Observation 1.** If a graph G is k-contractible to a graph H, then $|V(G)| \leq |V(H)| + k$, and any H-witness structure W of G satisfies the following three properties: no witness set of W contains more than k+1 vertices, W has at most k big witness sets, and all the big witness sets of W together contain at most 2k vertices. A 2-coloring of a graph G is a function $\phi:V(G)\to\{1,2\}$. Here, a 2-coloring of G is merely an assignment of colors 1 and 2 to the vertices of G, and should not be confused with a proper 2-coloring of G, which is a 2-coloring with the additional property that no two adjacent vertices receive the same color. If all the vertices belonging to a set $S\subseteq V(G)$ have been assigned the same color by ϕ , we say that S is monochromatic with respect to ϕ , and we use $\phi(S)$ to denote the color of the vertices of S. Any 2-coloring ϕ of G defines a partition of V(G) into two sets V_{ϕ}^1 and V_{ϕ}^2 , which are the sets of vertices of G colored 1 and 2 by ϕ , respectively. A set $X\subseteq V(G)$ is a monochromatic component of G with respect to ϕ if G[X] is a connected component of $G[V_{\phi}^1]$ or a connected component of $G[V_{\phi}^2]$. We say that two different 2-colorings ϕ_1 and ϕ_2 of G coincide on a vertex set $A\subseteq V(G)$ if $\phi_1(v)=\phi_2(v)$ for every vertex $v\in A$. ### 3 Tree Contraction As ano and Hirata [2] showed that TREE CONTRACTION is NP-complete. In this section, we first show that TREE CONTRACTION does not have a polynomial kernel, unless NP \subseteq coNP/poly. We then present a $4.98^k n^{O(1)}$ time algorithm for TREE CONTRACTION. A polynomial parameter transformation from a parameterized problem Q_1 to a parameterized problem Q_2 is a polynomial time reduction from Q_1 to Q_2 such that the parameter of the output instance is bounded by a polynomial in the parameter of the input instance. Bodlaender et al. [8] proved that if Q_1 is NP-complete, if Q_2 is in NP, if there is a polynomial parameter transformation from Q_1 to Q_2 , and if Q_2 has a polynomial kernel, then Q_1 has a polynomial kernel. **Theorem 1.** Tree Contraction does not have a kernel with size polynomial in k, unless $NP \subseteq coNP/poly$. Proof. We give a polynomial parameter transformation from Red-Blue Domination to Tree Contraction. Red-Blue Domination takes as input a bipartite graph G = (A, B, E) and an integer t, and the question is whether there exists a subset of at most t vertices in B that dominates A. We may assume that every vertex of A has a neighbor in B, and that $t \leq |A|$. This problem, when parameterized by |A|, has been shown not to have a polynomial kernel, unless $NP \subseteq conP/poly$ [16]. Since Tree Contraction is in NP, the existence of the polynomial parameter transformation described below implies that Tree Contraction does not have a kernel with size polynomial in k, unless $NP \subseteq conP/poly$. Given an instance of Red-Blue Domination, that is a bipartite graph G = (A, B, E) and an integer t, we construct an instance (G', k) of Tree Contraction with $G' = (A' \cup B', E')$ as follows. To construct G', we first add a new vertex a to A and make it adjacent to every vertex of B. We define $A' = A \cup \{a\}$. We then add, for every vertex u of A, k+1 new vertices to B that are all made adjacent to exactly u and a. The set B' consists of the set B and the |A|(k+1) newly added vertices. Finally, we set k = |A| + t. This completes the construction. Observe that $k \leq 2|A|$, which means that the construction is parameter preserving. In particular, we added $|A|(k+1)+1 \leq 2|A|^2+|A|+1$ vertices to G to obtain G', and we added |B| edges incident to a and then two edges incident to each vertex of $B' \setminus B$. Hence the size of the graph has increased by $O(|B|+|A|^2)$. We show that there is a subset of at most t vertices in B that dominates A in G if and only if G' is k-contractible to a tree. Assume there exists a set $S \subseteq B$ of size at most t such that S dominates A in G. Vertex a is adjacent to all vertices of S, so the set $X = \{a\} \cup S \cup A$ is connected in G'. Note that all the vertices of G' that do not belong to X form an independent set in G. Consider the unique witness structure of G' that has X as its only big witness set. Contracting all the edges of a spanning tree of G[X] yields a star. Since X has at most 1+t+|A|=1+k vertices, any spanning tree of G[X] has at most K edges. Hence K is K-contractible to a tree. For the reverse direction, assume that G' is k-contractible to a tree T, and let W be a T-witness structure of G'. Vertex a is involved in k+1 different cycles with each vertex of A through the vertices of $B' \setminus B$. Hence, if a and a vertex u of A appear in different witness sets, we need more than k contractions to kill the k+1 cycles containing both a and u. Consequently, there must be a witness set $W \in \mathcal{W}$ that contains all the vertices of $A \cup \{a\}$. Since all the vertices of G' - Wbelong to B', they form an independent set in G'. This means that W is the only big witness set of W, and T is in fact a star. Since G' is k-contractible to T, we know that $|W| \le k+1$ by Observation 1. Suppose W contains a vertex $x \in B' \setminus B$. By construction, x is adjacent only to a and exactly one vertex $a' \in A$. Let b' be a neighbor of a' in B. Then we have $N_{G'}(x) \subseteq N_{G'}(b')$, so $W' = (W \setminus \{x\}) \cup \{b'\}$ is connected and $|W'| \leq |W|$. The unique witness structure of G' that has W' as its only big witness set shows that G' can be k-contracted to a tree T' on at least as many vertices as T. Thus we may assume that W contains no vertices of $B' \setminus B$. Let $S = W \setminus A'$. The set W is connected and A' is an independent set, so S dominates A'. Moreover $|S| = |W| - |A| - 1 \le k - |A| = t$. We conclude that S is a subset of at most t vertices in B that dominates A in G. As a contrast to this negative result, we present below an algorithm for TREE CONTRACTION with running time $4.98^k n^{O(1)}$. The straightforward proof of the following lemma has been omitted due to page restrictions. **Lemma 1.** A connected graph is k-contractible to a tree if and only if each of its 2-connected components can be contracted to a tree, using at most k edge contractions in total. The main idea for our algorithm for TREE CONTRACTION is to use 2-colorings of the input graph G. Let T be a tree, and let \mathcal{W} be a T-witness structure of G. We say that a 2-coloring ϕ of G is compatible with \mathcal{W} (or \mathcal{W} -compatible) if the following two conditions are both satisfied: (1) every witness set of \mathcal{W} is monochromatic with respect to ϕ , and (2) if W(u) and W(v) are big witness sets and $uv \in E(T)$, then $\phi(W(u)) \neq \phi(W(v))$. In Lemma 2, we will show that if we are given a 2-coloring ϕ of G that is \mathcal{W} -compatible, then we can use the monochromatic components of G with respect to ϕ to compute a T'-witness structure of G, such that T' is a tree with at least as many vertices as T. Informally, we do this by finding a "star-like" partition of each monochromatic component M of G, where one set of the partition is a connected vertex cover of G[M], and all the other sets have size 1. A connected vertex cover of a graph G is a subset $V' \subseteq V(G)$ such that G[V'] is connected and every edge of G has at least one endpoint in V'. **Proposition 1** ([4]). Given a graph G, it can be decided in $2.4882^t n^{O(1)}$ time whether G has a connected vertex cover of size at most t. If such a connected vertex cover exists, then it can be computed within the same time. **Lemma 2.** Let ϕ be a 2-coloring of a 2-connected graph G. If ϕ is compatible with a T-witness structure of G whose largest witness set has size d, where T is a tree, then a T'-witness structure of G can be computed in time $2.4882^d \, n^{O(1)}$, such that T' is a tree with as at least as many vertices as T. *Proof.* Suppose ϕ is compatible with a T-witness structure \mathcal{W} of G, such that T is a tree, and the largest witness set of \mathcal{W} has size d. The 2-connectedness of G implies that, if a witness set $W(v) \in \mathcal{W}$ is small, then v is a leaf of T. Let \mathcal{X} be the set of monochromatic components of G with respect to ϕ . Every witness set of \mathcal{W} is monochromatic by property (1) of a \mathcal{W} -compatible 2-coloring, and connected by definition. Hence, for every $W \in \mathcal{W}$, there exists an $X \in \mathcal{X}$ such that $W \subseteq X$. Moreover, since every $X \in \mathcal{X}$ is connected, there exists a vertex subset $Y \subseteq V(T)$ such that T[Y] is a connected subtree of T and $X = \bigcup_{y \in Y} W(y)$. Hence, \mathcal{X} is a T''-witness structure of G for a tree T'' that has at most as many vertices as T. We now show how to partition the big witness sets of \mathcal{X} in such a way, that we obtain a T'-witness structure of G for some tree T' with at least as many vertices as T. Suppose there exists a set $X \in \mathcal{X}$ that contains more than one witness set of \mathcal{W} , say $W(v_1), \ldots, W(v_p)$ for some $p \geq 2$. We know that at most one of these sets can be big, due to properties (1) and (2) of a \mathcal{W} -compatible 2-coloring and the observation that every small witness set corresponds to a leaf of T. If all the sets $W(v_1), \ldots, W(v_p)$ are small, then all the vertices v_1, \ldots, v_p are leaves in T. This means that p=2 and T consists of only two vertices; a trivial case. Suppose one of the sets, say $W(p_1)$, is big. Since each of the sets $W(v_2), \ldots, W(v_p)$ is small, the vertices v_2, \ldots, v_p are leaves in T. This means that the vertices v_1, \ldots, v_p induce a star in T, with center v_1 and leaves v_2, \ldots, v_p . Note that $W(v_1)$ is a connected vertex cover in the graph G[X]; this observation will be used in the algorithm below. Also note that the sets $W(v_1), \ldots, W(v_p)$ define an S-witness structure S of the graph G[X], where S is a star with p-1 leaves. We use the above observations to decide, for each $X \in \mathcal{X}$, if we can partition X into several witness sets. Recall that, given ϕ , we only know \mathcal{X} , and not \mathcal{W} . We perform the following procedure on each set $X \in \mathcal{X}$ that contains more than one vertex. Let $\hat{X} = X \cap N_G(V \setminus X)$ be the set of vertices in X that have at least one neighbor outside X. A shatter of X is a partition of X into sets, such that one of them is a connected vertex cover C of G[X] containing every vertex of X, and each of the others has size 1. The size of a shatter is the size of C. A shatter of X of minimum size can be found as follows. Recall that we assumed the largest witness set of W to be of size d. Construct a graph G' from the graph G[X] by adding, for each vertex $x \in X$, a new vertex x' and an edge xx'. Find a connected vertex cover C of minimum size in G' by applying the algorithm of Proposition 1 for all values of t from 1 to d. Since ϕ is W-compatible and each witness set of W has size at most d, such a set C will always be found. Observe that a minimum size connected vertex cover of G' does not contain any vertex of degree 1, which implies that $\hat{X} \subseteq C$. Hence C, together with the sets of size 1 formed by each of the vertices of $X \setminus C$, is a minimum size shatter of X. If, in \mathcal{X} , we replace X by the sets of this minimum size shatter of X, we obtain a \tilde{T} -witness structure of G, for some tree \tilde{T} with at least as many (or strictly more, if |C| < |X|) vertices as T". We point out that the size of C is at most as big as the size of the only possible big witness set of W that X contains. Hence, after repeating the above procedure on each of the sets of \mathcal{X} that contain more than one vertex, we obtain a desired T'-witness structure of G, where T' is a tree with at least at many vertices as T. By Proposition 1, we can find a minimum size shatter in $2.4882^d n^{O(1)}$ time for each set of \mathcal{X} . Since all the other steps can be performed in polynomial time, the overall running time is $2.4882^d n^{O(1)}$. The idea of our algorithm for TREE CONTRACTION is to generate a number of 2-colorings of the input graph G, and to check, using the algorithm described in the proof of Lemma 2, whether any of the generated 2-colorings yields a T-witness structure of G for a tree T on at least n-k vertices. Using the notion of universal sets, defined below, we are able to bound the number of 2-colorings that we need to generate and check. The restriction of a function $f: X \to Y$ to a set $S \subseteq X$ is the function $f_{|S}: S \to Y$ such that $f_{|S}(s) = f(s)$ for every $s \in S$. An (n,t)-universal set \mathcal{F} is a set of functions from $\{1,2,\ldots,n\}$ to $\{1,2\}$ such that, for every $S \subseteq \{1,2,\ldots,n\}$ with |S| = t, the set $\mathcal{F}_{|S|} = \{f_{|S|} \mid f \in \mathcal{F}\}$ is equal to the set 2^S of all the functions from S to $\{1,2\}$. **Theorem 2 ([24]).** There is a deterministic algorithm that constructs an (n,t)-universal set \mathcal{F} of size $2^{t+O(\log^2 t)} \log n$ in time $2^{t+O(\log^2 t)} n \log n$. **Theorem 3.** Tree Contraction can be solved in time $4.98^k n^{O(1)}$. Proof. Let G be an n-vertex input graph of TREE CONTRACTION. We assume that G is 2-connected, by Lemma 1. Our algorithm has an outer loop, which iterates over the values of an integer d from 1 to k+1. For each value of d, the algorithm constructs an (n, 2k-d+2)-universal set \mathcal{F}_d , and runs an inner loop that iterates over all 2-colorings $\phi \in \mathcal{F}_d$. At each iteration of the inner loop, the algorithm computes a minimum size shatter for each of the monochromatic components of G with respect to ϕ , using the $2.4882^d n^{O(1)}$ time procedure described in the proof of Lemma 2 with the value d determined by the outer loop. If this procedure yields a T'-witness structure of G for a tree T' with at least n-k vertices at some iteration of the inner loop, then the algorithm outputs YES. If none of the iterations of the inner loop yields a YES-answer, the outer loop picks the next value of d. If none of the iterations of the outer loop yields a YES-answer, then the algorithm returns NO. To prove correctness of the algorithm, suppose G is k-contractible to a tree T. Let \mathcal{W} be a T-witness structure of G whose largest witness set has size d^* . Note that $d^* < k+1$ by Observation 1. Let ψ be a 2-coloring of G such that each of the big witness sets of W is monochromatic with respect to ψ , such that $\psi(W(u)) \neq \psi(W(v))$ whenever uv is an edge in T, and such that the vertices in the small witness sets are all colored 1. Observe that ψ is a Wcompatible 2-coloring of G, as is any other 2-coloring of G that coincides with ψ on all the vertices of the big witness sets of \mathcal{W} . The largest witness set requires d^*-1 edge contractions, after which our remaining budget of edge contractions is $k-(d^*-1)=k-d^*+1$. As a result of Observation 1, the total number of vertices contained in big witness sets is thus at most $d^* + 2(k - d^* + 1) = 2k - d^* + 2$. Consequently, if we generate an $(n, 2k - d^* + 2)$ -universal set \mathcal{F}_{d^*} , then, by Theorem 2, \mathcal{F}_{d^*} contains at least one 2-coloring ϕ of G that coincides with ψ on all the vertices of the big witness sets of \mathcal{W} . Note that such a 2-coloring ϕ that is W-compatible. Recall that our algorithm iterates over all values of d from 1 to k+1, and that $d^* \leq k+1$. Hence, at the correct iteration of the outer loop, i.e., the iteration where $d = d^*$, our algorithm will process ϕ . As a result of Lemma 2, the algorithm will then find a T'-witness structure of G for some tree T' with at least n-k vertices. This means that the algorithm correctly outputs YES if G is k-contractible to a tree. Since the algorithm only outputs YES when it has detected a T'-witness structure for some tree T' with at least n-k vertices, it correctly outputs NO if G is not k-contractible to a tree. For each d, the size of \mathcal{F}_d is $2^{2k-d+2+\log^2(2k-d+2)}\log n$, and \mathcal{F}_d can be constructed in $2^{2k-d+2+\log^2(2k-d+2)}n\log n$ time, by Theorem 2. Summing $|\mathcal{F}_d| \cdot 2.4882^d n^{O(1)}$ over all values of d from 1 to k+1 shows that this deterministic algorithm runs in time $4.98^k n^{O(1)}$. We would like to remark that due to recent developments in the field, our result in fact implies a randomized $4^{k+o(k)}n^{O(1)}$ time algorithm for TREE CONTRACTION. Cygan et al. [14] give a Monte Carlo algorithm with running time $2^t n^{O(1)}$ for deciding whether a graph on n vertices has a connected vertex cover of size at most t and finding such a set if it exists. Summing $|\mathcal{F}_d| \cdot 2^d n^{O(1)}$ over all values of d from 1 to k+1, as it was done in the last line of the proof of Theorem 3, we obtain total running time $4^{k+o(k)} n^{O(1)}$ for a randomized algorithm. #### 4 Path Contraction Brouwer and Veldman [9] showed that, for every fixed $\ell \geq 4$, it is NP-complete to decide whether a graph can be contracted to the path P_{ℓ} . This, together with the observation that a graph G is k-contractible to a path if and only if G is contractible to P_{n-k} , implies that PATH CONTRACTION is NP-complete. In this section, we first show that PATH CONTRACTION has a linear vertex kernel. We then present an algorithm with running time $2^{k+o(k)}+n^{O(1)}$ for this problem. Throughout this section, whenever we mention a P_ℓ -witness structure $\mathcal{W}=\{W_1,\ldots W_\ell\}$, it will be implicit that $P_\ell=p_1\cdots p_\ell$, and $W_i=W(p_i)$ for every $i\in\{1,\ldots,\ell\}$. **Rule 1.** Let (G, k) be an instance of PATH CONTRACTION. If G contains a bridge uv such that the deletion of edge uv from G results in two connected components that contain at least k+2 vertices each, then return (G', k), where G' is the graph resulting from the contraction of edge uv. The proof of the following lemma has been omitted due to page restrictions. **Lemma 3.** Let (G', k) be an instance of PATH CONTRACTION resulting from the application of Rule 1 on (G, k). Then G' is k-contractible to a path if and only if G is k-contractible to a path. **Theorem 4.** Path Contraction has a kernel with at most 5k + 3 vertices. *Proof.* Let (G, k) be an instance of PATH CONTRACTION. We repeatedly test, in linear time, whether Rule 1 can be applied on the instance under consideration, and apply the reduction rule if possible. Each application of Rule 1 strictly decreases the number of vertices. Hence, starting from G, we reach in polynomial time a *reduced* graph, on which Rule 1 cannot be applied anymore. By Lemma 3, we know that the resulting reduced graph is k-contractible to a path if and only if G is k-contractible to a path. We now assume that G is reduced. We show that if G is k-contractible to a path, then G has at most 5k+3 vertices. Let $\mathcal{W}=\{W_1,\ldots,W_\ell\}$ be a P_ℓ -witness structure of G with $\ell \geq n-k$. We first prove that $\ell \leq 4k+3$. Assume that $\ell \geq 2k+4$, and let i be such that $k+2 \leq i \leq \ell-k-2$. Suppose, for contradiction, that both W_i and W_{i+1} are small witness sets, i.e., $W_i=\{u\}$ and $W_{i+1}=\{v\}$ for two vertices u and v of G. Then uv forms a bridge in G whose deletion results in two connected components. Each of these components contains at least all vertices from W_1,\ldots,W_{k+2} or all vertices from $W_{\ell-k-1},\ldots,W_\ell$. Hence they contain at least k+2 vertices each. Consequently, Rule 1 can be applied, contradicting the assumption that G is reduced. So there are no consecutive small sets among $W_{k+2},\ldots,W_{\ell-k-1}$. By Observation 1, W contains at most k big witness sets, so we have $(\ell-k-1)-(k+2)+1\leq 2k+1$ implying $\ell\leq 4k+3$. Combining this with the earlier assumption that $\ell\geq n-k$ yields $n\leq 5k+3$. \square The existence of a kernel with at most 5k+3 vertices easily implies a $32^{k+o(k)}+n^{O(1)}$ time algorithm for PATH CONTRACTION, which tests for each 2-coloring ϕ of the reduced input graph G' whether the monochromatic components of G' with respect to ϕ form a P_{ℓ} -witness structure of G' for some $\ell \geq n-k$. The natural follow-up question, which we answer affirmatively below, is whether this running time can be significantly improved. **Theorem 5.** Path Contraction can be solved in time $2^{k+o(k)} + n^{O(1)}$. *Proof.* Given an instance (G, k) of PATH CONTRACTION, our algorithm first constructs an equivalent instance (G', k) such that G' has at most 5k+3 vertices. This can be done in $n^{O(1)}$ time by Theorem 4. For the rest of the proof, we assume that the input graph G has $n \leq 5k+3$ vertices. Suppose G is k-contractible to a path P_{ℓ} , and let $\mathcal{W} = \{W_1, \ldots, W_{\ell}\}$ be a P_{ℓ} -witness structure of G. We distinguish two cases, depending on whether or not ℓ is larger than \sqrt{k} . Suppose $\ell \leq \sqrt{k}$. Then $n \leq k + \sqrt{k}$. We define $X^* = W_1 \cup W_3 \cup W_5 \cup \ldots$ and $Y^* = W_2 \cup W_4 \cup \ldots$. Then X^* and Y^* form a 2-partition of V(G), and the connected components of the graphs $G[X^*]$ and $G[Y^*]$ form a P_ℓ -witness structure of G. If we contract every edge of G that has both endpoints in the same connected component of $G[X^*]$ or $G[Y^*]$, we end up with the path P_ℓ . Hence, for every given partition of V(G) into two sets X and Y, we can check in $k^{O(1)}$ time whether the connected components of G[X] and G[Y] constitute a $P_{\ell'}$ -witness structure of G for some $\ell' \geq n - k$. Based on this analysis, if G has at most $k + \sqrt{k}$ vertices, the algorithm checks for each 2-partition X, Y of V(G) whether this 2-partition yields a desired witness structure. Note that if G is k-contractible to a path on more than \sqrt{k} vertices, then it is also k-contractible to a path on exactly \sqrt{k} vertices, since G has at most $K + \sqrt{k}$ vertices. Since there are at most $K + \sqrt{k}$ partitions to consider, the running time of the algorithm in this case is $K + \sqrt{k}$ partitions to consider, the running time of the algorithm in this case is $K + \sqrt{k}$ vertices. Now suppose $\ell > \sqrt{k}$. For each integer i with $1 \leq i \leq \lfloor \sqrt{k} \rfloor$, we define $W_i^* = W_i \cup W_{i+|\sqrt{k}|} \cup W_{i+2|\sqrt{k}|} \cup \dots$ Since $n \leq 5k+3$, there is at least one index j such that $|W_i^*| \leq (5k+3)/\sqrt{k}$. Let G_1^*, \ldots, G_p^* denote the connected components of $G - W_j^*$, where $p \leq (5k+3)/\sqrt{k}$. Note that each connected component G_i^* has a P^* -witness structure W_i^* for some path P^* on at most $\sqrt{k}-1$ vertices, such that the union of these witness structures \mathcal{W}_i^* , together with the vertex sets of G_1^*, \ldots, G_p^* , forms a P_ℓ -witness structure of G. Moreover, each connected component G_i^* has at most $k + \sqrt{k} - 1$ vertices by Observation 1. Based on this analysis, if G has more than $k+\sqrt{k}$ vertices, the algorithm searches for the correct set W_i^* by generating all subsets $W \subseteq V(G)$ of size at most $(5k+3)/\sqrt{k}$, and performing the following checks for each subset W. If the graph G-W has more than $(5k+3)/\sqrt{k}$ connected components, or if one of the connected components has more than $k + \sqrt{k} - 1$ vertices, then W is discarded. For each W that is not discarded, we run the algorithm of the previous case on each connected component G_i of G-W to check whether G_i has a $P_{\ell'}$ -witness structure with $\ell' \leq \sqrt{k} - 1$. Since in that algorithm we check every 2-partition of $V(G_i)$, we can check whether G_i has a $P_{\ell'}$ -witness structure with the additional constraint that precisely the vertices in the first and the last witness sets have neighbors in the appropriate connected components of G[W], and pick such a $P_{\ell'}$ -witness structure W_i for which ℓ' is a large as possible. Finally, we check if all these witness structures W_i , together with the vertex sets of the connected components of G[W], form a P-witness structure of G for some path P on at least n-k vertices. If so, the algorithm outputs YES. Otherwise, the algorithm tries another subset W, or outputs NO if all subsets W have been considered. For each generated set W, we run the algorithm of the previous case on each of the $O(\sqrt{k})$ connected components of G-W, so we can check in $2^{k+o(k)}O(\sqrt{k})=2^{k+o(k)}$ time whether we get a desired P-witness structure of G. Since we generate no more than $(5k+3)^{(5k+3)/\sqrt{k}}=2^{o(k)}$ subsets W, we get a total running time of $2^{k+o(k)}$ also for this case. ## 5 Concluding Remarks The number of edges to contract in order to obtain a certain graph property is a natural measure of how close the input graph is to having that property, similar to the more established similarity measures of the number of edges or vertices to delete. The latter measures are well studied when the desired property is being acyclic or being a path, defining some of the most widely known and well studied problems within Parameterized Complexity. Inspired by this, we gave kernelization results and fast fixed parameter algorithms for PATH CONTRACTION and TREE CONTRACTION. We think these results motivate the parameterized study of similar problems, an example of which is INTERVAL CONTRACTION. It is not known whether the vertex deletion variant of this problem, INTERVAL VERTEX DELETION, is fixed parameter tractable. Is INTERVAL CONTRACTION fixed parameter tractable? **Acknowledgments.** The authors would like to thank Martin Vatshelle, Saket Saurabh, and Erik Jan van Leeuwen for valuable suggestions and comments. ### References - 1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42, 844–856 (1995) - Asano, T., Hirata, T.: Edge-contraction problems. J. Comput. Syst. Sci. 26, 197–208 (1983) - van Bevern, R., Komusiewicz, C., Moser, H., Niedermeier, R.: Measuring Indifference: Unit Interval Vertex Deletion. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 232–243. Springer, Heidelberg (2010) - 4. Binkele-Raible, D., Fernau, H.: Enumerate & Measure: Improving Parameter Budget Management. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 38–49. Springer, Heidelberg (2010) - 5. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5, 59–68 (1994) - Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: Proc. FOCS, pp. 629–638. IEEE (2009) - Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009) - 8. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011) - Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. Journal of Graph Theory 11(1), 71–79 (1987) - Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996) - Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set New Measure and New Structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010) - 12. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008) - 13. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990) - Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proc. FOCS 2011 (to appear, 2011) - 15. Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An $O(2^{O(k)}n^3)$ FPT algorithm for the undirected feedback vertex set problem. Theory Comput. Syst. 41(3), 479–492 (2007) - Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through Colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009) - 17. Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, Heidelberg (1999) - Guo, J., Gramm, J., Huffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006) - Heggernes, P., van 't Hof, P., Jansen, B., Kratsch, S., Villanger, Y.: Parameterized Complexity of Vertex Deletion into Perfect Graph Classes. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 240–251. Springer, Heidelberg (2011) - Heggernes, P., van 't Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting graphs to paths and trees. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 55–66. Springer, Heidelberg (2012) - 21. Kawarabayashi, K., Reed, B.A.: An (almost) linear time algorithm for odd cycles transversal. In: Proc. SODA 2010, pp. 365–378. ACM-SIAM (2010) - 22. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010) - 23. Marx, D., Schlotter, I.: Obtaining a Planar Graph by Vertex Deletion. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 292–303. Springer, Heidelberg (2007) - 24. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proc. FOCS 1995, pp. 182–191. IEEE (1995) - 25. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Disc. Appl. Math. 113(1), 109–128 (2001) - Philip, G., Raman, V., Villanger, Y.: A Quartic Kernel for Pathwidth-One Vertex Deletion. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 196–207. Springer, Heidelberg (2010) - 27. Thomassé, S.: A $4k^2$ vertex kernel for feedback vertex set. ACM Transactions on Algorithms 6(2) (2010) - 28. Villanger, Y.: Proper Interval Vertex Deletion. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 228–238. Springer, Heidelberg (2010) - 29. Watanabe, T., Ae, T., Nakamura, A.: On the removal of forbidden graphs by edge-deletion or edge-contraction. Disc. Appl. Math. 3, 151–153 (1981) - 30. Watanabe, T., Ae, T., Nakamura, A.: On the NP-hardness of edge-deletion and edge-contraction problems. Disc. Appl. Math. 6, 63–78 (1983) - 31. Yannakakis, M.: Node and edge-deletion NP-complete problems. In: Proc. STOC 1978, pp. 253–264. ACM (1978) - 32. Yannakakis, M.: The effect of a connectivity requirement on the complexity of maximum subgraph problems. J. ACM 26(4), 618–630 (1979) - 33. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)