Contracting Graphs to Paths and Trees*

Pinar Heggernes', Pim van 't Hof', Benjamin Lévéque?,
Daniel Lokshtanov?, and Christophe Paul?

! Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{pinar.heggernes,pim.vanthof}@ii.uib.no
2 CNRS, LIRMM, Université Montpellier 2, Montpellier, France
{leveque,paul}@lirmm.fr
3 Dept. Computer Science and Engineering, University of California San Diego, USA
dlokshtanov@cs.ucsd.edu

Abstract. Vertex deletion and edge deletion problems play a central
role in Parameterized Complexity. Examples include classical problems
like FEEDBACK VERTEX SET, ODD CYCLE TRANSVERSAL, and CHORDAL
DELETION. The study of analogous edge contraction problems has so far
been left largely unexplored from a parameterized perspective. We con-
sider two basic problems of this type: TREE CONTRACTION and PATH
CONTRACTION. These two problems take as input an undirected graph
G on n vertices and an integer k, and the task is to determine whether
we can obtain an acyclic graph or a path, respectively, by a sequence of
at most k edge contractions in GG. We present an algorithm with run-
ning time 4.987n°® for TREE CONTRACTION, based on a variant of the
color coding technique of Alon, Yuster and Zwick, and an algorithm with
running time 287°® 4 %W for PaTH CONTRACTION. Furthermore, we
show that PATH CONTRACTION has a kernel with at most 5k + 3 vertices,
while TREE CONTRACTION does not have a polynomial kernel unless NP
C coNP /poly. We find the latter result surprising, because of the connec-
tion between TREE CONTRACTION and FEEDBACK VERTEX SET, which
is known to have a kernel with 4k? vertices.

1 Introduction

For a graph class II, the II-CONTRACTION problem takes as input a graph G
and an integer k, and the question is whether there is a graph H € IT such that
G can be contracted to H using at most k edge contractions. In early papers
by Watanabe et al. [29I30] and Asano and Hirata [2], II-CONTRACTION was
proved to be NP-complete for several classes IT. The IT-CONTRACTION problem
fits into a wider and well studied family of graph modification problems, where
vertex deletions and edge deletions are two other ways of modifying a graph.
II-VERTEX DELETION and II-EDGE DELETION are the problems of deciding
whether some graph belonging to graph class IT can be obtained from G by
at most k vertex deletions or by at most k£ edge deletions, respectively. All of
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these problems are shown to be NP-complete for most of the interesting graph
classes IT [25I31132133]. However, whereas IT-VERTEX DELETION and IT-EDGE
DELETION have been studied in detail for several graph classes IT with respect
to fixed parameter tractability (e.g., [BIBITOT7TIRTI2223/26/28]), this has not
been the case for II-CONTRACTION. Note that every edge contraction reduces the
number of vertices of the input graph by one, which means that the parameter
k of II-CONTRACTION is never more than n — 1.

Here we study IT-CONTRACTION when I7 is the class of acyclic graphs and
when 7 is the class of paths. Since edge contractions preserve the number of con-
nected components, we may assume that the input graph is connected, justifying
the names TREE CONTRACTION and PATH CONTRACTION. Both problems are
NP-complete [2[9]. We find these problems of particular interest, since their ver-
tex deletion versions, widely known as FEEDBACK VERTEX SET and LONGEST
INDUCED PATH, are famous and well-studied. These two problems are known to
be fixed parameter tractable and have polynomial kernels, when parameterized
by the number of deleted vertices.

The question whether a fixed parameter tractable problem has a polynomial
kernel or not has attracted considerable attention during the last years, espe-
cially after the establishment of methods for proving non-existence of polynomial
kernels, up to some complexity theoretical assumptions [6I7/8]. During the last
decade, considerable effort has also been devoted to improving the parameter de-
pendence in the running time of classical parameterized problems. Even in the
case of a running time which is single exponential in k, lowering the base of the
exponential function is considered to be an important challenge. For instance,
the running time of FEEDBACK VERTEX SET has been successively improved
from 37.7%n°M) 18] to 10.57%n°W [15], 5#n°M) [12], 3.83%n°M) [11], and ran-
domized 3Fn°M) [14].

In this paper, we present results along these established lines for TREE CON-
TRACTION and PATH CONTRACTION. It is easy to see that if a graph G is
contractible to a path or a tree (i.e., a graph with treewidth 1) with at most
k edge contractions, then the treewidth of G is at most k& + 1. Consequently,
when parameterized by k, fixed parameter tractability of TREE CONTRACTION
and PATH CONTRACTION follows from the well known result of Courcelle [13],
as both problems are expressible in monadic second order logic. However, this
approach yields very unpractical algorithms whose running times involve huge
functions of k. Here, we give algorithms with running time 2k+°(®) 4 nOM) for
PATH CONTRACTION, and 4.98% n®() for TREE CONTRACTION. To obtain the
latter result, we use a variant of the color coding technique of Alon, Yuster
and Zwick [I]. Combined with a recent result of Cygan et al. [14], our results
also imply a randomized algorithm for TREE CONTRACTION with running time
gkto(k) nO)  Furthermore, we show that PATH CONTRACTION has a linear ver-
tex kernel. On the negative side, we show that TREE CONTRACTION does not
have a polynomial kernel, unless NP C coNP /poly. This is a contrast compared
to the corresponding vertex deletion problem FEEDBACK VERTEX SET, which
is known to have a quadratic kernel [27].
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2 Definitions and Notation

All graphs in this paper are finite, undirected, and simple, i.e., do not contain
multiple edges or loops. Given a graph G, we denote its vertex set by V(G) and
its edge set by E(G). We also use the ordered pair (V(G), E(G)) to represent G.
We let n = |V(G)|. Let G = (V, E) be a graph. The neighborhood of a vertex v in
G is the set Ng(v) = {w € V | vw € E} of neighbors of v in G. Let S C V. We
write Ng(S) to denote |, g Na(v)\ S. We say that S dominates a set T C V' if
every vertex in T either belongs to S or has at least one neighbor in S. We write
G[S] to denote the subgraph of G induced by S. We use shorthand notation G—v
to denote G[V \ {v}] for a vertex v € V, and G—S to denote G[V \ S] for a set
of vertices S C V. A graph is connected if it has a path between every pair of
its vertices, and is disconnected otherwise. The connected components of a graph
are its maximal connected subgraphs. We say that a vertex subset S C V is
connected if G[S] is connected. A bridge in a connected graph is an edge whose
deletion results in a disconnected graph. A cut verter in a connected graph is
a vertex whose deletion results in a disconnected graph. A graph is 2-connected
if it has no cut vertex. A 2-connected component of a graph G is a maximal
2-connected subgraph of G.

We use P, to denote the graph isomorphic to a path on ¢ vertices, i.e.,

the graph with ordered vertex set {p1,p2,ps,...,p¢} and edge set {p1p2, P2ps,

.oy pe—1pet. We will also write p1ps -« - pe to denote Pp. A tree is a connected
acyclic graph. A vertex with exactly one neighbor in a tree is called a leaf. A
star is a tree isomorphic to the graph with vertex set {a,v1,va,...,v5} and edge
set {av1, ave,...,av,}. Vertex a is called the center of the star.

The contraction of edge xy in G removes vertices z and y from G, and replaces
them by a new vertex, which is made adjacent to precisely those vertices that
were adjacent to at least one of the vertices x and y. A graph G is contractible
to a graph H, or H-contractible, if H can be obtained from G by a sequence
of edge contractions. Equivalently, G is H-contractible if there is a surjection
v : V(G) — V(H), with W(h) = {v € V(G) | ¢(v) = h} for every h € V(H),
that satisfies the following three conditions: (1) for every h € V(H), W(h) is
a connected set in G; (2) for every pair h;, h; € V(H), there is an edge in G
between a vertex of W (h;) and a vertex of W (h;) if and only if h;h,; € E(H); (3)
W ={W(h) | h € V(H)} is a partition of V(G). We say that W is an H-witness
structure of G, and the sets W (h), for h € V(H), are called witness sets of W.

If a witness set contains more than one vertex of GG, then we call it a big
witness set; a witness set consisting of a single vertex of G is called small. We
say that G is k-contractible to H, with k < n — 1, if H can be obtained from G
by at most k edge contractions. The next observation follows from the above.

Observation 1. Ifa graph G is k-contractible to a graph H, then |V (G)| < |V (H)]
+ k, and any H-witness structure W of G satisfies the following three properties:
no witness set of W contains more than k—+ 1 vertices, VW has at most k big witness
sets, and all the big witness sets of W together contain at most 2k vertices.
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A 2-coloring of a graph G is a function ¢ : V(G) — {1,2}. Here, a 2-coloring
of G is merely an assignment of colors 1 and 2 to the vertices of G, and should
not be confused with a proper 2-coloring of GG, which is a 2-coloring with the
additional property that no two adjacent vertices receive the same color. If all
the vertices belonging to a set S C V(G) have been assigned the same color by
¢, we say that S is monochromatic with respect to ¢, and we use ¢(S) to denote
the color of the vertices of S. Any 2-coloring ¢ of G defines a partition of V(G)
into two sets V¢>1 and V¢2, which are the sets of vertices of G colored 1 and 2 by ¢,
respectively. A set X C V(G) is a monochromatic component of G with respect
to ¢ if G[X] is a connected component of G[V(bl] or a connected component of
G [Vf] We say that two different 2-colorings ¢, and ¢2 of G coincide on a vertex
set A CV(G) if ¢1(v) = ¢2(v) for every vertex v € A.

3 TREE CONTRACTION

Asano and Hirata [2] showed that TREE CONTRACTION is NP-complete. In this
section, we first show that TREE CONTRACTION does not have a polynomial
kernel, unless NP C coNP /poly. We then present a 4.98n°() time algorithm
for TREE CONTRACTION.

A polynomial parameter transformation from a parameterized problem @1 to
a parameterized problem @5 is a polynomial time reduction from @1 to Q2 such
that the parameter of the output instance is bounded by a polynomial in the
parameter of the input instance. Bodlaender et al. [§] proved that if Q; is NP-
complete, if ()5 is in NP, if there is a polynomial parameter transformation from
Q1 to Q2, and if @2 has a polynomial kernel, then @1 has a polynomial kernel.

Theorem 1. TREE CONTRACTION does not have a kernel with size polynomial
in k, unless NP C coNP/poly.

Proof. We give a polynomial parameter transformation from RED-BLUE DoM-
INATION to TREE CONTRACTION. RED-BLUE DOMINATION takes as input a
bipartite graph G = (A, B, FE) and an integer ¢, and the question is whether
there exists a subset of at most ¢ vertices in B that dominates A. We may as-
sume that every vertex of A has a neighbor in B, and that ¢ < |A|. This problem,
when parameterized by |A|, has been shown not to have a polynomial kernel,
unless NP C coNP /poly [16]. Since TREE CONTRACTION is in NP, the existence
of the polynomial parameter transformation described below implies that TREE
CONTRACTION does not have a kernel with size polynomial in k, unless NP C
coNP /poly.

Given an instance of RED-BLUE DOMINATION, that is a bipartite graph
G = (A, B, E) and an integer t, we construct an instance (G’, k) of TREE CON-
TRACTION with G’ = (A’UB’, E’) as follows. To construct G’, we first add a new
vertex a to A and make it adjacent to every vertex of B. We define A’ = AU{a}.
We then add, for every vertex u of A, k4 1 new vertices to B that are all made
adjacent to exactly v and a. The set B’ consists of the set B and the |A|(k + 1)
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newly added vertices. Finally, we set k = |A| + ¢t. This completes the construc-
tion. Observe that k < 2|A|, which means that the construction is parameter
preserving. In particular, we added |A|(k + 1) +1 < 2|A|> + |A| + 1 vertices
to G to obtain G’, and we added |B| edges incident to a and then two edges
incident to each vertex of B’ \ B. Hence the size of the graph has increased by
O(|B| + |A]?). We show that there is a subset of at most ¢ vertices in B that
dominates A in G if and only if G’ is k-contractible to a tree.

Assume there exists a set S C B of size at most ¢ such that S dominates A
in G. Vertex a is adjacent to all vertices of S, so the set X = {a} US U A is
connected in G’. Note that all the vertices of G’ that do not belong to X form
an independent set in G. Consider the unique witness structure of G’ that has X
as its only big witness set. Contracting all the edges of a spanning tree of G[X]
yields a star. Since X has at most 1+t + |A| = 1+ k vertices, any spanning tree
of G[X] has at most k edges. Hence G’ is k-contractible to a tree.

For the reverse direction, assume that G’ is k-contractible to a tree T', and let
W be a T-witness structure of G’. Vertex a is involved in k + 1 different cycles
with each vertex of A through the vertices of B'\ B. Hence, if a and a vertex u of
A appear in different witness sets, we need more than k contractions to kill the
k + 1 cycles containing both a and u. Consequently, there must be a witness set
W € W that contains all the vertices of AU {a}. Since all the vertices of G' — W
belong to B’, they form an independent set in G’. This means that W is the only
big witness set of W, and T is in fact a star. Since G’ is k-contractible to T', we
know that |W| < k+1 by Observation[Il Suppose W contains a vertex x € B’\ B.
By construction, x is adjacent only to a and exactly one vertex a’ € A. Let b’ be
a neighbor of @’ in B. Then we have N¢/(z) C Ng/(b'), so W = (W {z})U{d'}
is connected and |[W’| < |W/|. The unique witness structure of G’ that has W’
as its only big witness set shows that G’ can be k-contracted to a tree T’ on at
least as many vertices as 7. Thus we may assume that W contains no vertices
of B’\ B. Let S = W\ A’. The set W is connected and A’ is an independent set,
so S dominates A’. Moreover |S| = |W| — |A| — 1 < k — |A| = t. We conclude
that S is a subset of at most ¢ vertices in B that dominates A in G. O

As a contrast to this negative result, we present below an algorithm for TREE
CONTRACTION with running time 4.98*n°()_ The straightforward proof of the
following lemma has been omitted due to page restrictions.

Lemma 1. A connected graph is k-contractible to a tree if and only if each of
its 2-connected components can be contracted to a tree, using at most k edge
contractions in total.

The main idea for our algorithm for TREE CONTRACTION is to use 2-colorings
of the input graph G. Let T be a tree, and let W be a T-witness structure of
G. We say that a 2-coloring ¢ of G is compatible with W (or W-compatible) if
the following two conditions are both satisfied: (1) every witness set of W is
monochromatic with respect to ¢, and (2) if W(u) and W(v) are big witness
sets and wv € E(T), then ¢(W(u)) # ¢(W(v)). In Lemma [ we will show
that if we are given a 2-coloring ¢ of G that is W-compatible, then we can
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use the monochromatic components of G with respect to ¢ to compute a T"-
witness structure of G, such that T” is a tree with at least as many vertices as T'.
Informally, we do this by finding a “star-like” partition of each monochromatic
component M of G, where one set of the partition is a connected vertex cover
of G[M], and all the other sets have size 1. A connected vertex cover of a graph
G is a subset V' C V(@) such that G[V'] is connected and every edge of G has
at least one endpoint in V.

Proposition 1 ([4]). Given a graph G, it can be decided in 2.4882'n°M) time
whether G has a connected vertexr cover of size at most t. If such a connected
vertex cover exists, then it can be computed within the same time.

Lemma 2. Let ¢ be a 2-coloring of a 2-connected graph G. If ¢ is compatible
with a T-witness structure of G whose largest witness set has size d, where T is
a tree, then a T'-witness structure of G can be computed in time 2.48824 O™
such that T' is a tree with as at least as many vertices as T.

Proof. Suppose ¢ is compatible with a T-witness structure W of G, such that T
is a tree, and the largest witness set of W has size d. The 2-connectedness of G
implies that, if a witness set W (v) € W is small, then v is a leaf of T'.

Let X be the set of monochromatic components of G with respect to ¢. Every
witness set of W is monochromatic by property (1) of a W-compatible 2-coloring,
and connected by definition. Hence, for every W € W, there exists an X € X
such that W C X. Moreover, since every X € & is connected, there exists
a vertex subset Y C V(T') such that T[Y] is a connected subtree of T and
X =U,ey W(y). Hence, X is a T"-witness structure of G for a tree 7" that has
at most as many vertices as T'. We now show how to partition the big witness
sets of X in such a way, that we obtain a T’-witness structure of G for some tree
T’ with at least as many vertices as T'.

Suppose there exists a set X € X that contains more than one witness set of
W, say W(v1), ..., W (v,) for some p > 2. We know that at most one of these sets
can be big, due to properties (1) and (2) of a W-compatible 2-coloring and the
observation that every small witness set corresponds to a leaf of T'. If all the sets
W(v1),...,W(vp) are small, then all the vertices vy, ..., v, are leaves in T'. This
means that p = 2 and T consists of only two vertices; a trivial case. Suppose one
of the sets, say W (p1), is big. Since each of the sets W (v2), ..., W(v,) is small,
the vertices vg,...,v, are leaves in 7. This means that the vertices vq,...,v,
induce a star in T', with center v1 and leaves vs,...,v,. Note that W(v1) is a
connected vertex cover in the graph G[X]; this observation will be used in the
algorithm below. Also note that the sets W (v1),..., W(vp) define an S-witness
structure S of the graph G[X], where S is a star with p — 1 leaves.

We use the above observations to decide, for each X € X, if we can partition
X into several witness sets. Recall that, given ¢, we only know X', and not W.
We perform the following procedure on each set X € X that contains more than
one vertex. Let X = X N Ng(V \ X) be the set of vertices in X that have at
least one neighbor outside X. A shatter of X is a partition of X into sets, such
that one of them is a connected vertex cover C' of G[X] containing every vertex
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of X, and each of the others has size 1. The size of a shatter is the size of C'. A
shatter of X of minimum size can be found as follows. Recall that we assumed
the largest witness set of W to be of size d. Construct a graph G’ from the graph
G[X] by adding, for each vertex z € X, a new vertex 2/ and an edge zz’. Find
a connected vertex cover C' of minimum size in G’ by applying the algorithm of
Proposition [l for all values of ¢ from 1 to d. Since ¢ is W-compatible and each
witness set of WV has size at most d, such a set C' will always be found. Observe
that a minimum size connected vertex cover of G’ does not contain any vertex
of degree 1, which implies that X C C. Hence C, together with the sets of size
1 formed by each of the vertices of X \ C, is a minimum size shatter of X. If,
in X, we replace X by the sets of this minimum size shatter of X, we obtain
a T-witness structure of G, for some tree T with at least as many (or strictly
more, if |C| < | X]|) vertices as T”. We point out that the size of C' is at most as
big as the size of the only possible big witness set of YW that X contains. Hence,
after repeating the above procedure on each of the sets of X’ that contain more
than one vertex, we obtain a desired T’-witness structure of G, where T is a
tree with at least at many vertices as T'.

By Proposition [[, we can find a minimum size shatter in 2.4882%n %M time
for each set of X'. Since all the other steps can be performed in polynomial time,
the overall running time is 2.4882%n 0. g

The idea of our algorithm for TREE CONTRACTION is to generate a number of
2-colorings of the input graph G, and to check, using the algorithm described
in the proof of Lemma [2 whether any of the generated 2-colorings yields a T-
witness structure of G for a tree T on at least n — k vertices. Using the notion
of universal sets, defined below, we are able to bound the number of 2-colorings
that we need to generate and check.

The restriction of a function f : X — Y to a set S C X is the function
fis + 8 — Y such that fig(s) = f(s) for every s € S. An (n,t)-universal set F is
a set of functions from {1,2,...,n} to {1, 2} such that, for every S C {1,2,...,n}
with [S] = ¢, the set Fis = {fis | f € F} is equal to the set 2% of all the functions
from S to {1, 2}.

Theorem 2 ([24]). There is a deterministic algorithm that constructs an (n,t)-
universal set F of size 2070008° ) 160 in time 260008 )y logn.

Theorem 3. TREE CONTRACTION can be solved in time 4.985n0(1)

Proof. Let G be an n-vertex input graph of TREE CONTRACTION. We assume
that G is 2-connected, by Lemma [[l Our algorithm has an outer loop, which
iterates over the values of an integer d from 1 to k£ + 1. For each value of d, the
algorithm constructs an (n, 2k — d+ 2)-universal set Fy, and runs an inner loop
that iterates over all 2-colorings ¢ € F,;. At each iteration of the inner loop,
the algorithm computes a minimum size shatter for each of the monochromatic
components of G with respect to ¢, using the 2.4882%n°™) time procedure de-
scribed in the proof of Lemma 2l with the value d determined by the outer loop.
If this procedure yields a T'-witness structure of G for a tree T’ with at least
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n — k vertices at some iteration of the inner loop, then the algorithm outputs
YES. If none of the iterations of the inner loop yields a YES-answer, the outer
loop picks the next value of d. If none of the iterations of the outer loop yields
a YES-answer, then the algorithm returns NO.

To prove correctness of the algorithm, suppose G is k-contractible to a tree
T. Let W be a T-witness structure of G whose largest witness set has size
d*. Note that d* < k + 1 by Observation [Il Let ) be a 2-coloring of G such
that each of the big witness sets of W is monochromatic with respect to ¥,
such that (W (u)) # (W (v)) whenever uv is an edge in T, and such that
the vertices in the small witness sets are all colored 1. Observe that 1 is a W-
compatible 2-coloring of G, as is any other 2-coloring of G that coincides with
on all the vertices of the big witness sets of W. The largest witness set requires
d* —1 edge contractions, after which our remaining budget of edge contractions is
k—(d*—1) = k—d*+1. As aresult of Observation 1, the total number of vertices
contained in big witness sets is thus at most d* + 2(k — d* + 1) = 2k — d* + 2.
Consequently, if we generate an (n, 2k — d* + 2)-universal set Fy-, then, by
Theorem 2l Fy4+« contains at least one 2-coloring ¢ of G that coincides with 1 on
all the vertices of the big witness sets of W. Note that such a 2-coloring ¢ that is
W-compatible. Recall that our algorithm iterates over all values of d from 1 to
k41, and that d* < k+ 1. Hence, at the correct iteration of the outer loop, i.e.,
the iteration where d = d*, our algorithm will process ¢. As a result of Lemma/[2]
the algorithm will then find a T'-witness structure of G for some tree T’ with
at least n — k vertices. This means that the algorithm correctly outputs YES if
G is k-contractible to a tree. Since the algorithm only outputs YES when it has
detected a T’-witness structure for some tree T’ with at least n — k vertices, it
correctly outputs NO if G is not k-contractible to a tree.

For each d, the size of F is 22k—d+2+l08”(2k—d+2) |0y and F,; can be con-
structed in 22k—d+2+l0g*(2k=d+2) 100y time, by Theorem Pl Summing |7y -
2.48829n°(M) over all values of d from 1 to k + 1 shows that this determinis-
tic algorithm runs in time 4.98%n°M), a

We would like to remark that due to recent developments in the field, our result in
fact implies a randomized 4¥t°(%) O time algorithm for TREE CONTRACTION.
Cygan et al. [14] give a Monte Carlo algorithm with running time 2! n°") for
deciding whether a graph on n vertices has a connected vertex cover of size at
most ¢ and finding such a set if it exists. Summing |F,| - 22n°M) over all values
of d from 1 to k + 1, as it was done in the last line of the proof of Theorem [3]
we obtain total running time 4¥T°(*) nOM) for a randomized algorithm.

4 PatH CONTRACTION

Brouwer and Veldman [9] showed that, for every fixed ¢ > 4, it is NP-complete
to decide whether a graph can be contracted to the path P,. This, together
with the observation that a graph G is k-contractible to a path if and only if
G is contractible to P,_j, implies that PATH CONTRACTION is NP-complete.
In this section, we first show that PATH CONTRACTION has a linear vertex
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kernel. We then present an algorithm with running time 25+°(%) 4 nOM) for this
problem. Throughout this section, whenever we mention a P,-witness structure
W = {Wi,... W}, it will be implicit that P, = p;---pe, and W; = W(p;) for
every i € {1,...,¢}.

Rule 1. Let (G,k) be an instance of PATH CONTRACTION. If G contains a
bridge uv such that the deletion of edge uv from G results in two connected
components that contain at least k + 2 vertices each, then return (G', k), where
G’ is the graph resulting from the contraction of edge uv.

The proof of the following lemma has been omitted due to page restrictions.

Lemma 3. Let (G', k) be an instance of PATH CONTRACTION resulting from
the application of Rule[d on (G,k). Then G’ is k-contractible to a path if and
only if G is k-contractible to a path.

Theorem 4. PATH CONTRACTION has a kernel with at most 5k + 3 vertices.

Proof. Let (G, k) be an instance of PATH CONTRACTION. We repeatedly test, in
linear time, whether Rule [Il can be applied on the instance under consideration,
and apply the reduction rule if possible. Each application of Rule 1 strictly
decreases the number of vertices. Hence, starting from G, we reach in polynomial
time a reduced graph, on which Rule[Il cannot be applied anymore. By Lemma 3]
we know that the resulting reduced graph is k-contractible to a path if and only
if G is k-contractible to a path.

We now assume that G is reduced. We show that if G is k-contractible to
a path, then G has at most 5k + 3 vertices. Let W = {Wy,..., Wy} be a Pp-
witness structure of G with £ > n—k. We first prove that £ < 4k+3. Assume that
¢ > 2k+4, and let i be such that k+2 < ¢ < /—k—2. Suppose, for contradiction,
that both W; and W, are small witness sets, i.e., W; = {u} and W;11 = {v}
for two vertices u and v of G. Then wv forms a bridge in G whose deletion
results in two connected components. Each of these components contains at
least all vertices from Wy, ..., Wyi9 or all vertices from Wy_j_1,..., Wy. Hence
they contain at least k + 2 vertices each. Consequently, Rule [l can be applied,
contradicting the assumption that G is reduced. So there are no consecutive
small sets among Wiyo, ..., Wy_r_1. By Observation [Il W contains at most k
big witness sets, so we have ({ —k—1)— (k+2)+1 < 2k+1 implying ¢ < 4k+ 3.
Combining this with the earlier assumption that £ > n—k yieldsn < 5k+3. O

The existence of a kernel with at most 5k + 3 vertices easily implies a 32F+o(k) 4
nP® time algorithm for PATH CONTRACTION, which tests for each 2-coloring
¢ of the reduced input graph G’ whether the monochromatic components of G’
with respect to ¢ form a Pp-witness structure of G’ for some ¢ > n — k. The
natural follow-up question, which we answer affirmatively below, is whether this
running time can be significantly improved.

Theorem 5. PATH CONTRACTION can be solved in time 2kto(k) 4 pO1)
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Proof. Given an instance (G,k) of PATH CONTRACTION, our algorithm first
constructs an equivalent instance (G’, k) such that G’ has at most 5k+3 vertices.
This can be done in n®™M) time by Theorem[l For the rest of the proof, we assume
that the input graph G has n < 5k 4 3 vertices. Suppose G is k-contractible
to a path Py, and let W = {Wy,...,W,} be a P,-witness structure of G. We
distinguish two cases, depending on whether or not ¢ is larger than v/k.

Suppose £ < VEk. Then n < k + vk. We define X* = W, U WsUWsU...
and Y* = Wo UW, U .... Then X* and Y* form a 2-partition of V(G), and
the connected components of the graphs G[X*] and G[Y*] form a P,-witness
structure of G. If we contract every edge of G that has both endpoints in the
same connected component of G[X*] or G[Y*], we end up with the path P;.
Hence, for every given partition of V(G) into two sets X and Y, we can check
in kK2 time whether the connected components of G[X] and G[Y] constitute a
Py-witness structure of G for some ¢/ > n — k. Based on this analysis, if G has
at most k + vk vertices, the algorithm checks for each 2-partition X,Y of V(G)
whether this 2-partition yields a desired witness structure. Note that if G is k-
contractible to a path on more than v/k vertices, then it is also k-contractible to
a path on exactly vk vertices, since G has at most k + vk vertices. Since there
are at most 2F+Vk partitions to consider, the running time of the algorithm in
this case is 2F+o(k) O() = gk+o(k),

Now suppose ¢ > k. For each integer i with 1 < i < |Vk|, we define
Wy =W, U Wi+[\/kj U WH?N’CJ U.... Since n < 5k + 3, there is at least one

index j such that [Wr| < (5k + 3)/Vk. Let G%, .. ., G denote the connected

components of G — W, where p < (5k + 3)/Vk. Note that each connected
component G has a P*-witness structure W, for some path P* on at most
Vk — 1 vertices, such that the union of these witness structures Wy, together
with the vertex sets of G7, ..., G}, forms a Pp-witness structure of G. Moreover,

each connected component G has at most k+ V'k —1 vertices by Observation Il
Based on this analysis, if G has more than k++/k vertices, the algorithm searches
for the correct set W} by generating all subsets W C V(G) of size at most
(5k + 3)/Vk, and performing the following checks for each subset W. If the
graph G — W has more than (5k +3)/v/k connected components, or if one of the
connected components has more than k + vk — 1 vertices, then W is discarded.
For each W that is not discarded, we run the algorithm of the previous case on
each connected component G; of G—W to check whether G; has a Pp-witness
structure with ¢/ < v/k—1. Since in that algorithm we check every 2-partition of
V(G;), we can check whether G; has a Py -witness structure with the additional
constraint that precisely the vertices in the first and the last witness sets have
neighbors in the appropriate connected components of G[W], and pick such a
Py -witness structure W; for which ¢’ is a large as possible. Finally, we check if
all these witness structures W;, together with the vertex sets of the connected
components of G[W], form a P-witness structure of G for some path P on at least
n — k vertices. If so, the algorithm outputs YES. Otherwise, the algorithm tries
another subset W, or outputs NO if all subsets W have been considered. For each
generated set W, we run the algorithm of the previous case on each of the O(v/k)
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connected components of G — W, so we can check in 2F°(K)O(/k) = 2k+e(k)
time whether we get a desired P-witness structure of G. Since we generate no
more than (5k + 3)(5k+3)/Vk — 90(k) gubsets W, we get a total running time of
2k+o(k) also for this case. 0

5 Concluding Remarks

The number of edges to contract in order to obtain a certain graph property is a
natural measure of how close the input graph is to having that property, similar
to the more established similarity measures of the number of edges or vertices to
delete. The latter measures are well studied when the desired property is being
acyclic or being a path, defining some of the most widely known and well studied
problems within Parameterized Complexity. Inspired by this, we gave kerneliza-
tion results and fast fixed parameter algorithms for PATH CONTRACTION and
TREE CONTRACTION. We think these results motivate the parameterized study
of similar problems, an example of which is INTERVAL CONTRACTION. It is not
known whether the vertex deletion variant of this problem, INTERVAL VERTEX
DELETION, is fixed parameter tractable. Is INTERVAL CONTRACTION fixed pa-
rameter tractable?
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