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Abstract

Some of the most well studied problems in algorithmic graph theory deal with
modifying a graph into an acyclic graph or into a path, using as few operations as
possible. In Feedback Vertex Set and Longest Induced Path, the only allowed
operation is vertex deletion, and in Spanning Tree and Longest Path, only edge
deletions are permitted. We study the edge contraction variant of these problems:
given a graph G and an integer k, decide whether G can be transformed into an
acyclic graph or into a path using at most k edge contractions. Both problems
are known to be NP-complete in general. We show that on chordal graphs these
problems can be solved in O(n+m) and O(nm) time, respectively. On the negative
side, both problems remain NP-complete when restricted to bipartite input graphs.

Keywords: Edge contractions, chordal graphs, polynomial time algorithms.

1 This work is supported by the Research Council of Norway and by EPSRC UK grant
EP/D053633/1.
2 Emails: pinar.heggernes@ii.uib.no, pim.vanthof@ii.uib.no
3 Emails: leveque@lirmm.fr, paul@lirmm.fr

Electronic Notes in Discrete Mathematics 37 (2011) 87–92

1571-0653/$ – see front matter © 2011 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

doi:10.1016/j.endm.2011.05.016

http://www.elsevier.com/locate/endm
http://dx.doi.org/10.1016/j.endm.2011.05.016
http://dx.doi.org/10.1016/j.endm.2011.05.016


1 Introduction

Graph modification problems play a central role in algorithmic graph theory,
not in the least because they can be used to model many graph theoreti-
cal problems that appear in practical applications [11,12,13]. The input of a
graph modification problem is a graph G and an integer k, and the question is
whether G can be modified in such a way that it satisfies some prescribed prop-
erty, using at most k operations of a given type. Many classical problems, like
Clique and Independent Set, can be formulated as graph modification prob-
lems. Some important and well studied problems of this kind ask whether a
graph can be modified into an acyclic graph or into a path, using at most k
operations. If the only allowed operation is vertex deletion, these problems
are widely known as Feedback Vertex Set and Longest Induced Path, re-
spectively. When only edge deletions are permitted, the problems are called
Spanning Tree and Longest Path. With the exception of Spanning Tree, all
these problems are known to be NP-complete on general graphs [5].

We study the problems of modifying a graph into an acyclic graph or into
a path using only edge contractions. The edge contraction operation plays a
key role in graph minor theory, and it also has applications in Hamiltonian
graph theory, computer graphics, and cluster analysis [10]. The problem of
contracting an input graph G to a fixed target graph H has recently attracted
a considerable amount of interest, and several results exist for this problem
when G or H belong to special graph classes [3,8,9,10]. Rather surprisingly,
hardly any results seem to be known on the problem of contracting a graph
to some graph belonging to a specified graph class, rather than to a single
fixed target graph. The two problems we study in this paper, which we call
Tree-Contractibility and Path-Contractibility, take as input a connected
graph G and an integer k, and the question is whether G can be contracted
to a tree or to a path, respectively, using at most k edge contractions. Note
that contracting a connected graph to a tree is equivalent to contracting it to
an acyclic graph, as edge contractions preserve connectivity. Previous results
easily imply that both problems are NP-complete in general [1,3].

We show that the problems Tree-Contractibility and Path-Contract-

ibility can be solved on chordal graphs in O(n + m) and O(nm) time, respec-
tively. It is known that Tree-Contractibility is NP-complete on bipartite
graphs [7], and we show that the same holds for Path-Contractibility. To
relate our results to previous work, we would like to mention that Feedback

Vertex Set and Longest Induced Path can be solved in polynomial time on
chordal graphs [4,14]. However, it is easy to find examples that show that
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the set of trees and paths that can be obtained from a chordal graph G by at
most k edge contractions might be completely different from the set of trees
and paths that can be obtained from G by at most k vertex deletions. As an
interesting contrast, Longest path remains NP-complete on chordal graphs [6].

2 Definitions and notation

All the graphs considered in this paper are undirected, finite and simple. We
use n and m to denote the number of vertices and edges of the input graph
of the problem or the algorithm under consideration. For any set S ⊆ V (G),
we write NG(S) = ∪u∈SNG(u) \ S and NG[S] = NG(S) ∪ S. A vertex v is
called simplicial if the set NG[v] is a clique. If H is a subgraph of G and
v ∈ NG(V (H)), then we refer to the vertices in NG(v) ∩ V (H) as the H-
neighbors of v. The distance dG(u, v) between two vertices u and v in G is
the number of edges in a shortest path between u and v, and diam(G) =
maxu,v∈V (G) dG(u, v). For any two vertices u and v of a path P in G, we write
uPv to denote the subpath of P from u to v in G. We write P� and C� to
denote the chordless path and the chordless cycle on � vertices, respectively.

The contraction of edge e = uv in G removes u and v from G, and replaces
them by a new vertex, which is made adjacent to precisely those vertices that
were adjacent to at least one of the vertices u and v. Instead of speaking of
the contraction of edge uv, we sometimes say that a vertex u is contracted
on v, in which case we use v to denote the new vertex resulting from the
contraction. Let S ⊆ V (G) be a connected set. If we repeatedly contract
a vertex of G[S] on one of its neighbors in G[S] until only one vertex of
G[S] remains, we say that we contract S into a single vertex. We say that
a graph G can be k-contracted to a graph H, with k ≤ n − 1, if H can be
obtained from G by a sequence of k edge contractions. Note that if G can
be k-contracted to H, then H has exactly k fewer vertices than G has. We
simply say that a graph G can be contracted to H if it can be k-contracted to
H for some k ≥ 0. Let H be a graph with vertex set {h1, . . . , h|V (H)|}. Saying
that a graph G can be contracted to H is equivalent to saying that G has
a so-called H-witness structure W , which is a partition of V (G) into witness
sets W (h1), . . . , W (h|V (H)|) such that each witness set induces a connected
subgraph of G, and such that for every two hi, hj ∈ V (H), witness sets W (hi)
and W (hj) are adjacent in G if and only if hi and hj are adjacent in H. By
contracting each of the witness sets into a single vertex, which can be done due
to the connectivity of the witness sets, we obtain the graph H. An H-witness
structure of G is, in general, not uniquely defined (see Fig. 1).
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Fig. 1. Two P4-witness structures of a graph.

3 Contracting chordal graphs

A graph is chordal if it does not contain a chordless cycle on at least four ver-
tices as an induced subgraph. It is easy to show that the class of chordal graphs
is closed under edge contractions, and we use this observation throughout this
section. LetW be an H-witness structure of a graph G. Levin, Paulusma and
Woeginger [10] observed that if u and v are two vertices of G and x and y are
two vertices of H such that u ∈W (x) and v ∈W (y), then dG(u, v) ≥ dH(x, y).
This observation immediately implies that a graph G cannot be contracted to
a chordless path of length more than diam(G). We show that if G is chordal,
then G can be contracted to a chordless path of length diam(G). Note that
this is not the case for every graph: for example, the graph C� has diameter
��/2	, but cannot be contracted to a chordless path of length more than 1.

Theorem 3.1 Every connected chordal graph G can be contracted to a chord-
less path of length diam(G).

Proof (Sketch). Let u and v be two vertices of a connected chordal graph G
such that dG(u, v) = diam(G), and let P be a shortest path from u to v. Let
R = G − NG[V (P )]. We can repeatedly contract a vertex in V (R) on one of
its neighbors such that the resulting graph G′ is isomorphic to G[NG[V (P )]].
It can be shown that every vertex in Q = NG(V (P )) has exactly one, two,
or three P -neighbors, and that these neighbors are consecutive vertices of P .
We repeatedly contract every vertex of Q with exactly one P -neighbor on
this P -neighbor. Then, as long as there is a vertex in Q with exactly three
P -neighbors, we contract such a vertex on its middle P -neighbor. If all the
vertices in Q have exactly two P -neighbors, we arbitrarily pick a vertex in Q
and contract it on either one of its P -neighbors. If this causes vertices in Q
to have three P -neighbors, we deal with those vertices first. It can be shown
that, after each of the contractions described above, P is still a shortest path
from u to v. After all vertices of Q have been contracted on one of their
P -neighbors, we end up with P , which has length diam(G). �

Corollary 3.2 A connected chordal graph G can be k-contracted to a chord-
less path if and only if k ≥ n− diam(G).
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Corollary 3.3 Path-Contractibility can be solved in O(nm) time on chordal
graphs.

We now turn our attention to Tree-Contractibility on chordal graphs.
We say that a tree T is optimal for G if G can be contracted to T , but cannot
be contracted to any tree with strictly more vertices than T .

Lemma 3.4 If a connected graph G has a simplicial vertex v, then G has a
T -witness structure W for some optimal tree T , such that W (x) = {v} for
some vertex x of T .

Lemma 3.4 naturally suggests an algorithm for contracting a connected
chordal graph to an optimal tree.

Theorem 3.5 Tree-Contractibility can be solved in O(n+m) time on chordal
graphs.

Proof (Sketch). We repeatedly find a simplicial vertex v, contract its neigh-
borhood into a single vertex, and remove v from the graph. We continue this
process until we have removed all vertices. By applying all the edge contrac-
tions that have been performed during this procedure to the original graph G,
we find an optimal tree for G. It is clear that this algorithm runs in O(nm)
time. Using an implementation of clique trees using difference sets [2], we can
show that our algorithm runs in linear time. �

Note that the problem of contracting a chordal graph to a tree is equivalent
to the problem of contracting a chordal graph to a bipartite graph.

4 Contracting bipartite graphs

The following result was implicitly proved by Heggernes et al. [7].

Theorem 4.1 Tree-Contractibility is NP-complete on bipartite graphs.

Using a reduction from the NP-complete problem Hypergraph 2-Color-

ability, we can show that the problem of deciding whether a bipartite graph
can be contracted to a chordless path on � vertices is NP-complete for any
fixed � ≥ 6. This, together with the observation that a graph G can be k-
contracted to a path if and only if G can be contracted to Pn−k, yields the
following result.

Theorem 4.2 Path-Contractibility is NP-complete on bipartite graphs.
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