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COLORING BULL-FREE PERFECTLY CONTRACTILE GRAPHS∗
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Abstract. We consider the class of graphs that contain no bull, no odd hole, and no antihole of
length at least five. We present a new algorithm that colors optimally the vertices of every graph in
this class. This algorithm is based on the existence in every such graph of an ordering of the vertices
with a special property. More generally we prove, using a variant of lexicographic breadth-first
search, that in every graph that contains no bull and no hole of length at least five there is a vertex
that is not the middle of a chordless path on five vertices. This latter fact also generalizes known
results about chordal bipartite graphs, totally balanced matrices, and strongly chordal graphs.
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1. Introduction. The chromatic number of a graph G is the smallest integer
χ(G) for which it is possible to assign one color from the set {1, . . . , χ(G)} to each
vertex so that any two adjacent vertices receive different colors. A graph G is perfect
if the chromatic number of every induced subgraph H of G is equal to ω(H), where
ω(H) is the maximum clique size in H. A hole is a chordless cycle on at least four
vertices. The complement of a hole is called an antihole. A hole or an antihole is
odd if it has an odd number of vertices. Graphs that do not contain an odd hole
or an odd antihole of length at least five are usually called Berge graphs. Berge
[2, 3] conjectured that such graphs are perfect, and this famous problem, known
as the strong perfect graph conjecture, was solved by Chudnovsky et al. [5]. Earlier,
Grötschel, Lovász, and Schrijver [15] gave a polynomial time algorithm that computes
the chromatic number of every perfect graph; but this algorithm, based on the ellipsoid
method, is considered very impractical, and it is still an open problem to find a
purely combinatorial algorithm to color optimally the vertices of all perfect graphs in
polynomial time. Here we consider the class of bull-free graphs.
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Fig. 1. The bull.

A bull is a graph with five vertices a, b, c, d, e and edges ab, bc, cd, de, bd; see Figure
1. We will denote such a bull by a-bcd-e. In a bull a-bcd-e, we call the edge bd the
central edge and vertices b, d the ears of the bull. Chvátal and Sbihi [8] proved that
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the strong perfect graph conjecture holds for bull-free graphs, that is, every bull-free
Berge graph is perfect. Subsequently, the structure of bull-free Berge graphs was
also studied by Reed and Sbihi [31]; De Figueiredo, Maffray, and Porto [10, 11]; and
Hayward [18]. De Figueiredo and Maffray [9] gave a combinatorial algorithm, based
on the results from [8, 10], that optimally colors every bull-free Berge graph G with
n vertices and m edges in time O(n5m3).

Let B be the class of bull-free Berge graphs that contain no antihole of length at
least five. We will present an O(mn) algorithm that computes an optimal coloring for
every graph in class B. This algorithm is based on new structural results concerning
the graphs in that class. Before doing so, we want to review the known methods that
perform such a task, and for this purpose we need to introduce a few more definitions.

A graph G is weakly chordal [17] if G contains no hole of length at least five and no
antihole of length at least five. A graph G is transitively orientable [14, 28] if we can
assign one orientation to each of its edges so that for every directed path u → v → w
the arc u → w is present in the orientation. A graph G is perfectly orderable [6] if
it admits an ordering < such that, for every induced subgraph H of G, applying the
greedy coloring algorithm on (H,<) produces an optimal coloring (such an ordering
is called a perfect ordering). A homogeneous set in a graph G is a set S ⊂ V (G) with
|S| ≥ 2, S �= V (G), such that every vertex of V (G) \ S is adjacent to either all or
none of the vertices of S. A prism is a graph that consists in two disjoint triangles
and three disjoint paths between the two triangles, with no edge between any two of
these three paths other than the triangles’ edges. A prism is odd if these three paths
have odd length. A graph G is an Artemis graph [12] if it contains no odd hole, no
antihole of length at least five, and no prism. A graph G is a Grenoble graph [12]
if it contains no odd hole, no antihole of length at least five, and no odd prism. It
was proved in [10] that every graph in class B is “perfectly contractile” in the sense
of Bertschi [4]; see section 5. Note that a prism either is the complement of a cycle
of length six or contains a bull. Therefore, “bull-free Artemis,” “bull-free Grenoble,”
and “bull-free perfectly contractile” are just different names for class B.

We know of three purely combinatorial methods to color graphs in class B, which
we summarize briefly:

• Method 1: Results from [10, 11] say that every graph in class B either is weakly
chordal, or has a homogeneous set, or is transitively orientable. Homogeneous sets
can be handled by the so-called modular decomposition, which decomposes any graph
into O(n) subgraphs that have no homogeneous sets. Modular decomposition can
be performed in time O(n + m); see, for example, [16]. By [10, 11], for a graph
in class B, these indecomposable subgraphs are either weakly chordal or transitively
orientable. One can find an optimal coloring for these subgraphs in time O(nm) for
weakly chordal graphs [19] and in time O(m) for transitively orientable graphs [27].
One can then combine these optimal colorings along the modular decomposition to
obtain an optimal coloring of the original graph (details are omitted). Thus we can
estimate the complexity of this method at O(n2m).

• Method 2: Chvátal [7] conjectured that every graph in class B is perfectly
orderable, and Hayward [18] proved that conjecture, using some results from [10, 11].
We estimate the technique in [18] at O(n5) (the exponent 5 is due to the search for an
induced P5 performed in [11]), and so, combining the techniques in [10, 11, 18], and
using again a linear-time algorithm for modular decomposition such as [16], one can
find a perfect ordering of any graph in class B in time O(n5(n+m)). Then applying
the greedy coloring on this ordering produces an optimal coloring in time O(m). Thus
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the total complexity of this method can be estimated at O(n5(n + m)).
• Method 3: Since every graph in class B is an Artemis graph, one can use the

algorithm from [25], which colors every Artemis graph in time O(n2m).
Our aim here is to present an algorithm that we think is conceptually simpler

than all of the above and whose complexity is also lower.
First let us fix some terminology and notation. We say that a vertex a sees a

vertex b when ab is an edge of the graph, otherwise vertex a misses b. The complement
of a graph G is denoted by G. The neighborhood of a vertex v is denoted by N(v). The
degree of a vertex v in G is denoted by d(v). A chordless path on k vertices is denoted
by Pk. A house is a graph with five vertices a, b, c, d, e and edges ac, ce, eb, bd, da, ae;
vertex c is called the top of the house. Note that a house is the complement of a P5.
We will establish the following result.

Theorem 1.1. Every graph in B has a vertex that is not the top of a house.
The above theorem implies the following. Let G be any graph in B. So G

has a vertex v1 that is not the top of a house, and for i = 2, . . . , n, the subgraph
G \ {v1, . . . , vi−1} has a vertex vi that is not the top of a house in this subgraph. We
may call the ordering v1, . . . , vn of the vertices of G an NTH elimination ordering.
In section 3 we show how such an ordering can be computed in time O(nm), using
the algorithm described in section 2. After such an ordering is obtained, we run an
O(nm) coloring algorithm called Cosine*, which is a new algorithm based on Hertz’s
coloring algorithm Cosine [21]. Algorithm Cosine works on a graph whose vertices
need not be ordered, while Cosine* uses the NTH elimination ordering. In section 5
we prove the optimallity of this coloring algorithm for every graph in B. In section 6
we present an extension of this algorithm that finds a clique of maximum size in a
graph in B. This yields an O(nm) robust algorithm to color graphs in B.

Let C be the class of graphs that contain no bull and no hole of length at least five.
Clearly B is strictly contained in C, and Theorem 1.1 is an immediate consequence of
the following.

Theorem 1.2. Every graph in C has a vertex that is not the middle of a P5.
The above theorem will be proved in section 3. Note that this theorem implies

the following. Let G be any graph in C. So G has a vertex v1 that is not the middle
of a P5, and for i = 2, . . . , n, the subgraph G \ {v1, . . . , vi−1} has a vertex vi that is
not the middle of a P5 in this subgraph. We may call the ordering v1, . . . , vn of the
vertices of G an NMP5 elimination ordering. The proof of Theorem 1.2 is an O(nm)
algorithm called LexBFS* that finds such an ordering.

We mention a theoretical consequence of this theorem. Recall that a graph is
chordal bipartite if it is bipartite and it contains no hole of length at least six. A
classical result is the existence in every chordal bipartite graph of a vertex that is not
the middle of a P5. This result is known under several equivalent variants, such as
the existence of a simple vertex in every strongly chordal graph, or the existence of
a Γ-free ordering in every totally balanced matrix [26]. Since every chordal bipartite
graph is in class C, our Theorem 1.2 generalizes this result.

2. Algorithm LEXBFS*. Algorithm LexBFS* is a particular case of Algo-
rithm LexBFS (lexicographic breadth-first search). Algorithm LexBFS, due to Rose,
Tarjan, and Lueker [32], explores a graph and numbers its vertices one by one, from
n to 1. At the general step, each unnumbered vertex has a label, which is the set
of numbers of its already numbered neighbors. A lexicographic order is defined on
the labels: label L(a) is strictly greater than label L(b) if there exists an integer i
such that i ∈ L(a) \ L(b) and ∀j > i, either j ∈ L(a) ∩ L(b) or j /∈ L(a) ∪ L(b). The
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next vertex to be numbered is any unnumbered vertex whose label is lexicographically
maximal. Ties in LexBFS are broken arbitrarily.

In LexBFS*, we need to break ties according to the following rule. Suppose that
at a given step the set A of unnumbered vertices with maximal label satisfies |A| ≥ 2.
Let L(A) be the label of the vertices in A. Let U be the set of unnumbered vertices
not in A. For each u ∈ U , set L′(u) := L(u) \ L(A), and let the vertices of U be
ordered lexicographically according to L′. Then the first (i.e., maximal according to
the L′ ordering) vertex u of U “votes” by eliminating from A the nonneighbors of
u (except if that causes A to become empty; in that case u has no effect); then the
second vertex of U votes, etc. The procedure stops when all vertices of U have voted;
then ties are broken arbitrarily. Here is a formal description of the algorithm:

Algorithm LexBFS*

Input: A graph G with n vertices.
Output: An ordering σ on the vertices of G.
Initialization: For every vertex a of G, set L(a) := ∅;
General step: For i = n, . . . , 1 do:
1. Let A be the set of unnumbered vertices whose label is maximum,
and let U be the other unnumbered vertices.
2. While U �= ∅ do:

2.1. Select a vertex u ∈ U for which L(u) \ L(A) is maximum.
2.2. Set U := U \ {u}. If A ∩N(u) �= ∅, then set A := A ∩N(u).

3. Pick any vertex a ∈ A and set σ(a) := i.
4. For each unnumbered neighbor v of a, add i to L(v).

Complexity analysis. Let us analyze the complexity of Algorithm LexBFS*.
Rose, Tarjan, and Lueker [32] showed that Algorithm LexBFS can be implemented
in time O(n + m) as follows, where n is the number of vertices and m the number
of edges of the graph in input. Ordering the vertices according to the value of L(v)
can be done with the usual techniques, such as bucket sort [1]: For each label �, we
maintain the set S� of the unnumbered vertices v such that L(v) = �. This set is
implemented as a doubly linked list, where each element also points to the head of
the list, which is a special cell containing their label. The heads of the nonempty S�’s
are themselves put in decreasing lexicographic label order into a doubly linked list M .
During the initialization step, all vertices are put into S∅, and S∅ is the only element
of M . Thus the initialization takes time O(n). Set A of step 1 of the algorithm is
the first set in M . When a vertex a of A is selected at step 3, it is removed from the
data structure, and each neighbor u of a is removed from the set S� that contains u
and added into a (new) set S� ∪{σ(a)} = S� ∩N(A) which is placed just before S� in
M (empty sets are removed from M). This operation of splitting the S�’s takes time
O(d(a)). So the total cost of steps 3 and 4 is O(n + m). This is how LexBFS is
implemented in [32].

Unfortunately, breaking the ties in LexBFS* increases the complexity to O(nm)
as we show now. Consider the set U defined on line 1 of the algorithm. Set U is
ordered according to L′(u) by using the same data structure as before. This takes
time O(n + m). This ordering procedure is performed only once, at the beginning of
step 2. Then, at step 2.1 we take the maximum vertex u in the ordered set U (which
takes constant time), and the operations performed in step 2.2 take time O(d(u)). So
the total cost of step 2 is O(n + m). Since this step is performed n times, the total
running time of Algorithm LexBFS* is O(n(n + m)).

Actually, we will need to apply Algorithm LexBFS* on the complement G of a
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graph G. Let m be the number of edges in G. Since m = O(n2), this might lead to a
complexity of O(n3), but we can avoid this as follows. When applied on G, splitting
the sets S� take time O(d(a)), where d is the degree function in G, but we can do it
in time O(d(a)) if, instead of removing each neighbor u of a (in G) from the set S�

that contains u and adding it into the new set S� ∩NG(A), we remove each neighbor
u of a (in G) from the set S� that contains u and add it into a new set S� \NG(A),
which is placed just after S� in M . The same idea can be used to sort the set U and
to update A in time O(n + m). In conclusion, the total running time of Algorithm
LexBFS* applied on the complement G of a graph G with n vertices and m edges is
O(nm).

Properties of LexBFS. Here are some notation and properties for Algorithm
LexBFS. When the algorithm selects a vertex a ∈ A at step 3 of Algorithm LexBFS,
we denote by La(u) the current value of the label of any vertex u at this step of the
algorithm. We denote by a < b the fact that σ(a) < σ(b).

Lemma 2.1. Suppose that a < u, b ≤ u, and Lu(a) < Lu(b). Then a < b and, ∀v
such that v ≤ u, Lv(a) < Lv(b).

Proof. Suppose a < u, b ≤ u, and Lu(a) < Lu(b). At the step of the algorithm
when u is numbered, there exists i > σ(u) such that i ∈ Lu(b) \ Lu(a) and ∀j > i,
either j ∈ Lu(a)∩Lu(b) or j /∈ Lu(a)∪Lu(b). After u is numbered, integers that may
be added to L(a) and L(b) are smaller than σ(u) and therefore strictly smaller than
i, so the inequality L(a) < L(b) still holds throughout the rest of the execution of the
algorithm. Thus the lemma holds.

Lemma 2.2. Suppose that a < b and Lb(a) �= Lb(b). Then there exists a vertex
> b that sees b and misses a. Let f(b, a) be a maximum such vertex. Then we have
the following properties:

• For every u that sees a and misses b, we have u < f(b, a).
• Every u such that f(b, a) < u either sees both a, b or misses both a, b.

Proof. Suppose a < b and Lb(a) �= Lb(b). Then Lb(a) < Lb(b) because b is
selected before a. Then there exists i such that i ∈ Lb(b)\Lb(a) and ∀j > i, either j ∈
Lb(a)∩Lb(b) or j /∈ Lb(a)∪Lb(b). Vertex f(b, a) is the vertex such that σ(f(b, a)) = i.

Suppose a vertex u sees a, misses b, and u > f(b, a). Let j = σ(u). Since u sees
a, we have j ∈ Lb(a). Since u misses b, we have j /∈ Lb(b). So j ∈ Lb(a) \ Lb(b), a
contradiction to the definition of i.

Let u′ be a vertex such that f(b, a) < u′. Let j′ = σ(u′). Since j′ = σ(u′) >
σ(f(b, a)) = i, we have j ∈ Lb(a) ∩ Lb(b) or j /∈ Lb(a) ∪ Lb(b), and so u′ either sees
both a, b or u′ misses both. Thus the lemma holds.

Lemma 2.3. Suppose that a < b < u, and u sees a and misses b. Let a0 = a,
b0 = b, a1 = u, b1 = f(b, a), and define vertices ai and bi, for i ≥ 2, as follows, as
long as possible:

• If bi misses ai, then let ai+1 = f(ai, bi−1).
• If ai+1 misses bi, then let bi+1 = f(bi, ai).

Let k be the maximum integer such that ak is defined. Let � be the maximum integer
such that b� is defined, so � is equal to k or k + 1. Denote by P(u, b, a) the path
a0-· · ·-ak-b�-· · ·-b0. If a misses b, then P(u, b, a) is a chordless path. If a sees b, then
P(u, b, a) is a hole.

Proof. Suppose � = k for convenience (the same can be done when � = k + 1).
We prove by induction on j ≤ k the property that the sequences (ai)i≤j , (bi)i≤j are
well defined, a0 < b0 < a1 < b1 < · · · < aj < bj , a0-· · ·-aj and b0-· · ·-bj are chordless
paths, and there is no edge between the (ai)’s and the (bi)’s, except for akbk and
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possibly a0b0.

If j = 1, then a1 sees a0, misses b0, and a0 < b0 < a1, so Lb0(a0) �= Lb0(b0). So
vertex b1 = f(b0, a0) is well defined by Lemma 2.2. Vertex b1 sees b0, misses a0, and
a1 < b1. So the property is true for j = 1.

Now suppose that 1 ≤ j < k and that the property is true for j. Since bj sees
bj−1, misses aj , and bj−1 < aj < bj , we have Laj (bj−1) �= Laj (aj). Apply Lemma 2.2
to define aj+1 = f(aj , bj−1). Vertex aj+1 sees aj , misses bj−1, and bj < aj+1. Since
aj+1 misses bj−1, and a0 < b0 < a1 < b1 = f(b0, a0) · · · < aj = f(aj−1, bj−2) < bj =
f(bj−1, aj−1), it follows that aj+1 misses a0, . . . , aj−1, b0, . . . , bj−1. The same can be
done to define bj+1. So the property is true for j + 1. Thus the lemma holds.

Lemma 2.4. In a graph that contains no hole of length at least five, suppose that
a < b < u, u sees a, u misses b, and a sees b. Then f(b, a) sees u.

Proof. Consider the path P(u, b, a) of Lemma 2.3. Since a sees b, that path is a
hole, so it is a hole of length four, so f(b, a) sees u.

Properties of LexBFS*. Here are some notation and properties for Algorithm
LexBFS*. When the algorithm selects a vertex a ∈ A at step 3 of Algorithm
LexBFS*, we put L′

a(u) = La(u) \ La(a) for every (unnumbered) vertex u.

Lemma 2.5. Suppose that a < b, Lb(a) = Lb(b), and N(a) �= N(b). Then, during
the loop of step 2 of algorithm LexBFS*, vertex a has been removed from A by a
vertex u = g(b, a) that sees b and misses a. We have the following properties:

• u < a,
• Lb(u) < Lb(b),

if there exists a vertex v < a that sees a, misses b, and Lb(v) �= Lb(b), then L′
b(v) ≤

L′
b(u). If L′

b(v) �= L′
b(u), then there exists a vertex > b that sees u and misses a, b, v,

denote by x = h(u, v) a maximum such vertex. We have the following properties:

• For all y that sees v and misses a, b, u, we have y < x.
• For all y such that x < y and y misses a, b, we have y sees u, v or y misses
u, v.

Proof. The definition of u and its properties follows from the definition of the
algorithm. Suppose there exists a vertex v < a that sees a, misses b, and Lb(v) �=
Lb(b).

Suppose that L′
b(v) > L′

b(u). Then v should have been selected at step 2.1 before
u. Then, at step 2.2, A∩N(v) should be empty, otherwise b is removed from A and b
is not the selected vertex at step 3. Since a is in N(v), it has been previously removed
from A by a vertex w with L′

b(w) ≥ L′
b(v). Since L′

b(w) ≥ L′
b(v) > L′

b(u), so w �= u.
This contradicts the definition of u = g(b, a), so L′

b(v) ≤ L′
b(u).

If L′
b(v) �= L′

b(u), then x = h(u, v) is well defined.

Suppose there exists a vertex y that sees v, misses a, b, u, and x < y. Then
L′
b(v) < L′

b(u) implies that there exists a vertex > y that sees u and misses a, b, v; a
contradiction to the definition of x.

Let y′ be a vertex such that x < y′ and y′ misses a, b. By the preceding property,
it is not possible that y′ sees v and misses u. If y′ sees u and misses v, then this is a
contradiction to the definition of x. So y sees u, v or y misses u, v. Thus the lemma
holds.

3. Proof of Theorem 1.2. Recall that C denotes the class of graphs that con-
tain no bull and no hole of length at least five. In this section we prove that when
the input graph is in C, the ordering given by Algorithm LexBFS* is an NMP5 elim-
ination ordering. It may be worth pointing out that this outcome does not hold for
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LexBFS. For an example, consider the graph made of a chordless path a-b-c-d-e-f -
g plus one vertex h adjacent to a, c, e, g. Then LexBFS can produce the ordering
h, a, g, c, e, b, f, d, and d is the middle of the P5 b-c-d-e-f . It is this example that led
us to define the tie-breaking rule of LexBFS*.

Before proving the main result, we need the following lemma.

Lemma 3.1. In a graph G ∈ C, let P = a0-a1-· · ·-ar be a chordless path with
r ≥ 4, and let u be a vertex that sees the two endvertices a0, ar of P . Then one of the
following holds:

• u sees all vertices of P,
• r is even, and u sees a0, a2, . . . , ar and misses a1, a3, . . . , ar−1, or
• r = 4, and u sees a2 and exactly one of a1, a3.

Consequently, in any case, u sees a2 and ar−2.

Proof. Denote a segment as any subpath of P , of length at least one, whose
endvertices see u and interior vertices do not. So P is (edgewise) partitioned into its
segments. Since G contains no hole of length at least five, every segment has length
one or two. For � = 1, 2, let s� be the number of segments of P of length �. So
r = s1 + 2s2. If s1 = 0, then every segment has length two, and we have the second
outcome of the lemma. Now let s1 > 0. So u sees two consecutive vertices of P .
Suppose that we do not have the first outcome, so u has a nonneighbor in P . Thus,
up to symmetry, there is an integer i such that u sees ai and ai+1 and not ai+2. Then
i ≤ 1, for otherwise a0-uaiai+1-ai+2 is a bull, and r ≤ i+ 3, for otherwise ar-uaiai+1-
ai+2 is a bull. It follows that r = 4 and i = 1, and we have the third outcome. Thus
the lemma holds.

Now we prove the following theorem, which implies Theorem 1.2. For any path
P , let P ∗ denote the path formed by the interior vertices of P .

Theorem 3.2. When the input graph is a graph in C, Algorithm LexBFS*

produces an NMP5 ordering of the vertices of G.

Proof of Theorem 3.2. Say that a P5 a-b-c-d-e in G is bad if c < min{a, b, d, e}.
Say that a bad P5 a-b-c-d-e is worse than another bad P5 a′-b′-c′-d′-e′ if a ≥ a′, b ≥
b′, c ≥ c′, d ≥ d′, e ≥ e′, and at least one of these five inequalities is strict. Our aim
is to prove that there is no bad P5, so let us assume the contrary and show that this
leads to a contradiction. Let a-b-c-d-e be a worst P5. Up to symmetry we may assume
that e < a.

Claim 1. e < b.

Proof. Suppose the claim is false, so c < b < e < a.

Since a sees b, misses e, and b < e < a, we can consider the chordless path
R = P(a, e, b) of Lemma 2.3. If none of c, d has a neighbor in R∗, then R ∪ {c, d} is
a cycle of length at least six, so one of c, d has a neighbor in R∗. Let q be the vertex
of R∗ closest to a that sees one of c, d. If q misses c, then R[b, q] ∪ {d, c} is a hole of
length ≥ 5. So q sees c. The hole R[b, q] ∪ {c} must have length < 5, so q sees a and
so q �= d.

Since q sees c, misses b, and c < b < q, we have Lb(c) �= Lb(b). Apply Lemma 2.2
to define r = f(b, c). Vertex r sees b, misses c, and q < r. Since b sees c, vertex r sees
q by Lemma 2.4. Since r sees b, we have r �= d. Since f(e, b) is the neighbor of e on R,
it follows that f(e, b) ≤ q < r, and r sees b so r sees e by Lemma 2.2. If r sees a, then
there is a bull e-rab-c, a contradiction, so r misses a. If r misses d, then r, b, c, d, e is
a hole, so r sees d. Suppose R has length > 3, then f(e, b) < q = f(a, e) < r, r sees e
and misses a, a contradiction. So R has length 3, q sees e, and q = f(e, b).

Since r sees e, misses a, and e < a < r, we have La(e) �= La(a). Apply Lemma 2.2
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to define s = f(a, e). Vertex s sees a, misses e, and r < s. Since s sees a, we have
s �= d. Since s misses e and q = f(e, b) < r = f(b, c) < s, it follows that s misses b, c
by Lemma 2.2. If s sees d, then s, a, b, c, d is a hole, so s misses d. If s sees q, then
b-asq-e is a bull, so s misses q. If s sees r, then c-der-s is a bull, so s misses r.

Since s sees a, misses q, and a < q < s, we have Lq(a) �= Lq(q). Apply Lemma 2.2
to define t = f(q, a). Vertex t sees q, misses a, and s < t. Since q sees a, vertex t sees
s by Lemma 2.4. Since t misses a and q = f(e, b) < r = f(b, c) < s = f(a, e) < t,
vertex t misses b, c, e by Lemma 2.2. Since t misses c, we have t �= d. If t sees r, then
t, r, b, a, s is a hole, so t misses r, but then b-req-t is a bull, a contradiction. Thus the
claim holds.

Now we go on with the proof of the theorem. Since b sees c, misses e, and
c < e < b, we have Le(c) �= Le(e). Apply Lemma 2.2 to define p = f(e, c). Vertex p
sees e, misses c, and b < p. Since p sees e and misses c, we have p �= a and p �= d. If p
sees a, then p sees the extremities of the P5 a, b, c, d, e without seeing c, a contradiction
to Lemma 3.1, so p misses a. If p sees b, then p sees d, otherwise p, b, c, d, e is a hole.
If p misses b, then p misses d, otherwise the bad P5 a-b-c-d-p is worse than a-b-c-d-e.
So p either sees both b, d or misses both b, d.

Claim 2. a < b.

Proof. Suppose the claim is false, so c < e < b < a by Claim 1.

Case 1. p < a and p sees b, d. Since a sees b, misses p, and b < p < a, we have
Lp(b) �= Lp(p). Apply Lemma 2.2 to define q = f(p, b). Vertex q sees p, misses b, and
a < q. Since p sees b, vertex q sees a by Lemma 2.4. Since q sees a, we have q �= d.
Since p = f(e, c) < q, vertex q either sees both e, c or misses both e, c. Suppose q
misses e, c. If q sees d, then q, a, b, c, d is a hole, so q misses d. Then c-dep-q is a
bull, a contradiction. So q sees e, c. Since q sees c, misses b, and c < b < q, we have
Lb(c) �= Lb(b). Apply Lemma 2.2 to define r = f(b, c). Vertex r sees b, misses c, and
q < r. Since b sees c, vertex r sees q by Lemma 2.4. Since r sees b, misses c, and
p = f(e, c) < q = f(p, b) < r, it follows that r sees p and misses e. But then c-brp-e
is a bull, a contradiction.

Case 2. p < a and p misses b, d. Since a sees b, misses p, and b < p < a, we
can consider the chordless path R = P(a, p, b) of Lemma 2.3. If none of c, d, e has a
neighbor in R∗, then the R ∪ {c, d, e} is a cycle of length at least 7, so one of c, d, e
has a neighbor in R∗. Let q be the vertex of R∗ closest to a that sees one of c, d, e. If
q misses c, then one of R[b, q] ∪ {c, d}, R[b, q] ∪ {c, d, e} is a hole of length ≥ 5. So q
sees c. Since q sees c and p = f(e, c) < q, vertex q sees e. The hole R[b, q] ∪ {c} must
have length < 5, so q sees a and so q �= d. Since q sees c, misses b, and c < b < q, we
have Lb(c) �= Lb(b). Apply Lemma 2.2 to define r = f(b, c). Vertex r sees b, misses
c, and q < r. Since b sees c, vertex r sees q by Lemma 2.4. Since r sees b, misses
c, and p = f(e, c) < f(p, b) ≤ q < r, vertex r sees p and misses e. Suppose R has
length > 3, then f(p, b) < q = f(a, p) < r, r sees p, so r sees a and then c-bar-p
is a bull, a contradiction. So R has length three and q sees p. But then q sees the
extremities of the P6 a-b-c-d-e-p without seeing b, a contradiction to Lemma 3.1.

Case 3. a < p and p sees b, d. Since p sees b, misses a, and b < a < p, we have
La(b) �= La(a). Apply Lemma 2.2 to define q = f(a, b). Vertex q sees a, misses b, and
p < q. Since a sees b, vertex q sees p by Lemma 2.4. Since q sees a, we have q �= d.
Since p = f(e, c) < q, vertex q either sees both e, c or misses both e, c. Suppose q
misses e, c. If q sees d, then q, a, b, c, d is a hole, so q misses d. Then c-dep-q is a
bull, a contradiction, so q sees c, e. Since q sees c, misses b, and c < b < q, we have
Lb(c) �= Lb(b). Apply Lemma 2.2 to define r = f(b, c). Vertex r sees b, misses c, and
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q < r. Since b sees c, vertex r sees q by Lemma 2.4. Since r sees b, we have r �= d.
Since r sees b, misses c, and p = f(e, c) < q = f(a, b) < r, vertex r sees a and misses e.
If r sees p, then c-brp-e is a bull, so r misses p. Since r sees a, misses p, and a < p < r,
we have Lp(a) �= Lp(p). Apply Lemma 2.2 to define s = f(p, a). Vertex s sees p,
misses a and r < s. Since s misses a and p = f(e, c) < q = f(a, b) < r = f(b, c) < s,
vertex s misses a, b, c, e. Since s misses c, we have s �= d. If s misses d, then c-dep-s
is a bull, so s sees d. But then a-b-c-d-s is a bad P5 that is worse than a-b-c-d-e, a
contradiction.

Case 4. a < p and p misses b, d. Since p sees e, misses b, and e < b < p, we have
Lb(e) �= Lb(b). Apply Lemma 2.2 to define q = f(b, e). Vertex q sees b, misses e, and
p < q. Since q sees b, we have q �= d. Since q misses e and p = f(e, c) < q, vertex q
misses c. If q misses d, then q-b-c-d-e is worse than a-b-c-d-e, so q sees d.

Case 4.1. q misses a. Since q sees b, misses a, and b < a < q, we have La(b) �=
La(a). Apply Lemma 2.2 to define r = f(a, b). Vertex r sees a, misses b, and q < r.
Since a sees b, vertex r sees q by Lemma 2.4. Since r sees a, we have r �= d. Since
r misses b and p = f(e, c) < q = f(b, e) < r, vertex r misses b, c, e. If r sees d,
then a, b, c, d, r is a hole, so r misses d. If r sees p, then a, b, c, d, e, p, r is a hole, so
r misses p. Since r sees a, misses p, and a < p < r, we can consider the chordless
path R = P(r, p, a) of Lemma 2.3. Every vertex u of R∗ misses a and satisfies
p = f(e, c) < q = f(b, e) < r = f(a, b) < u, so u misses a, b, c, e. If d has no neighbor
in R∗, then R ∪ {b, c, d, e} is a cycle of length at least eight, so d has a neighbor in
R∗. Let s be the vertex of R∗ closest to a that sees d. Then R[a, s]∪{b, c, d} is a hole
of length ≥ 5, a contradiction.

Case 4.2. q sees a. If q sees p, then c-baq-p is a bull, so q misses p. Since q
sees a, misses p, and a < p < q, we can consider the chordless path R = P(q, p, a) of
Lemma 2.3. Since p = f(e, c) < q = f(b, e), every vertex of R∗ either sees b, c, e or
misses b, c, e. Let r be the neighbor of q in R∗. Vertex r misses a, and f(p, a) ≤ r.
If r misses b, c, e, then c-baq-r is a bull, so r sees b, c, e. Then a-bcr-e is a bull, a
contradiction. Thus the claim holds.

Claims 1 and 2 imply that c < e < a < b.

Since p sees e, misses a, and e < a < p, we have La(e) �= La(a). Apply Lemma 2.2
to define q = f(a, e). Vertex q sees a, misses e, and p < q. Since q sees a, we have
q �= d. Since d sees e and misses a, it follows that d < q = f(a, e). Since q misses e
and p = f(e, c) < q, vertex q misses c. If q sees d, then q sees b, otherwise q, a, b, c, d
is a hole. If q misses d, then q misses b, otherwise the bad P5 q-b-c-d-e is worse than
a-b-c-d-e. So q sees b, d or misses b, d.

Claim 3. The path q-a-b-c-d-e-p is chordless.

Proof. Suppose that q sees p. Then q sees the extremities of the path a-b-c-d-e-p
without seeing c, so, by Lemma 3.1, the path is not chordless, so p sees b, d. If q
misses b, d, then p sees the extremities of the path q-a-b-c-d-e without seeing c, a
contradiction to Lemma 3.1, so q sees b, d. But then c-bqp-e is a bull, a contradiction.
So q misses p.

Since q sees a, misses p, and a < p < q, we have Lp(a) �= Lp(p). Apply Lemma 2.2
to define r = f(p, a). Vertex r sees p, misses a, and q < r. Since r misses a and
p = f(e, c) < q = f(a, e) < r, vertex r misses c, e.

Suppose p sees b, d. If r misses d, then c-dep-r is a bull, so r sees d. If r misses b,
then the bad P5 a-b-c-d-r is worse than a-b-c-d-e, so r sees b. Then a-brp-e is a bull,
a contradiction. So p misses b, d.

Suppose q sees b, d and r sees q. If r misses b, then c-baq-r is a bull, so r sees b.
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If r misses d, then the bad P5 r-b-c-d-e is worse than a-b-c-d-e, so r sees d. Then
e-drq-a is a bull, a contradiction.

Suppose q sees b, d and r misses q. Since r sees p, misses q, and p < q < r, we
have Lq(p) �= Lq(q). Apply Lemma 2.2 to define s = f(q, p). Vertex s sees q, misses
p, and r < s. Since s misses p and p = f(e, c) < q = f(a, e) < r = f(p, a), vertex
s misses a, c, e. If s misses b, then c-baq-s is a bull, so s sees b. If s misses d, then
the bad P5 s-b-c-d-e is worse than a-b-c-d-e, so s sees d. Then e-dsq-a is a bull, a
contradiction. So q misses b, d. Thus the claim holds.

Claim 4. d < b.

Proof. Suppose the claim is false, then c < e < a < b < d by Claims 1 and 2.

Case 1. Ld(b) �= Ld(d). Apply Lemma 2.2 to define s = f(d, b). Vertex s sees d,
misses b, and d < s. Since s sees d, we have s �= p. Suppose s sees c. If s misses e,
then b-csd-e is a bull, so s sees e. If s misses a, then the bad P5 a-b-c-s-e is worse
than a-b-c-d-e, so s sees a. If s misses p, then a-sde-p is a bull, so s sees p. Then
b-cds-p is a bull, a contradiction, so s misses c. If s sees a, then a, b, c, d, s is a hole,
so s misses a. Then the bad P5 a-b-c-d-s is worse than a-b-c-d-e, a contradiction.

Case 2. Ld(b) = Ld(d). Since a sees b and misses d, we have N(b) �= N(d). Apply
Lemma 2.5 to define s = g(d, b). Vertex s sees d, misses b, s < b, and Ld(s) < Ld(d).
Since s misses b, we have s �= a, c. Since q sees a and misses d, we have Ld(a) �= Ld(d),
and since a sees b and misses d, we have L′

d(a) ≤ L′
d(s). If s sees q, then s sees the

extremities of the P5 q, a, b, c, d without seeing b, a contradiction to Lemma 3.1, so
s misses q. So L′

d(a) �= L′
d(s). Apply Lemma 2.5 to define t = h(s, a). Vertex t

sees s, misses a, b, d, and q < t. Since t misses a and p = f(e, c) < q = f(a, e) < t,
vertex t misses c, e. Since t misses e, we have s �= e. If s sees c, then b-cds-t is a
bull, so s misses c. If s sees a, then a, b, c, d, s is a hole, so s misses a. Suppose
s < e. Since t sees s, misses e, and s < e < t, we have Le(s) �= Le(e). Apply
Lemma 2.2 to define u = f(e, s). Vertex u sees e, misses s, and t < u. Since u
sees e and p = f(e, c) < q = f(a, e) < t < u, vertex u sees a, c. Since u sees a,
misses s, t = h(s, a) < u, and s = g(b, d), vertex u sees b, d. But then a-ucd-s is a
bull, a contradiction. So e < s. Then the bad P5 a-b-c-d-s is worse than a-b-c-d-e, a
contradiction. Thus the claim holds.

Claim 5. Lb(d) = Lb(b).

Proof. Suppose the claim is false, so Lb(d) �= Lb(b). Apply Lemma 2.2 to define
s = f(b, d). Vertex s sees b, misses d, and b < s. Since s sees b, we have s �= q.
Suppose s sees c. If s misses a, then d-csb-a is a bull, so s sees a. If s misses e, then
the bad P5 a-s-c-d-e is worse than a-b-c-d-e, so s sees e. If s misses q, then e-sba-q is
a bull, so s sees q. Then d-cbs-q is a bull, a contradiction, so s misses c. If s sees e,
then b, c, d, e, s is a hole, so s misses e. Then s-b-c-d-e is a bad P5 that is worse than
a-b-c-d-e, a contradiction. Thus the claim holds.

Claim 6. a < d.

Proof. Suppose the claim is false, then d < a < b. By Lemma 2.1, Lb(d) ≤
Lb(a) ≤ Lb(b), and, by Claim 5, Lb(d) = Lb(b), so Lb(a) = Lb(b). Vertex q sees a,
misses b, and a < b < q, a contradiction. Thus the claim holds.

With the preceding claims, we have established that c < e < a < d < b < p =
f(e, c) < q = f(a, e), Lb(d) = Lb(b), and q-a-b-c-d-e-p is a chordless path. Define
sequences (ai), (bi), (di), (ei) as follows:

• a0 = a, b0 = b, d0 = d, e0 = e, b1 = q = f(a, e), d1 = p = f(e, c).
• For i ≥ 1, ai = g(bi, di), ei = g(di, bi−1).
• For i ≥ 2, bi = h(ai−1, ei−1), di = h(ei−1, ai−2).
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For any k ≥ 1, let us say that a-b-c-d-e admits an extension of order k, noted Wk, if
the sequences (ai)i<k, (bi)i≤k, (di)i≤k, (ei)i<k are well defined, and have the following
property:

• c < e0 < a0 < · · · < ek−1 < ak−1 < d0 < b0 < · · · < dk < bk.
• Lbk−1

(b0) = · · · = Lbk−1
(bk−1) = Lbk−1

(d0) = · · · = Lbk−1
(dk−1).

• bk-ak−1-bk−1-· · ·-b1-a0-b0-c-d0-e0-d1-· · ·-dk−1-ek−1-dk is a chordless path.

Claims 1–6 and the definition of p, q shows that a-b-c-d-e admits an extension of order
1. Let k be the greatest integer such that a-b-c-d-e admits an extension Wk of order
k. We will prove that a-b-c-d-e admits an extension of order k + 1. Since G is finite,
this is a contradiction that will complete the proof that there is no bad P5.

Claim 7. Ldk
(bk−1) = Ldk

(dk).

Proof. For suppose that Ldk
(bk−1) �= Ldk

(dk). Since bk−1 < dk we can apply
Lemma 2.2 to define r = f(dk, bk−1). Vertex r sees dk, misses bk−1, and dk < r. Since
r sees dk, we have r �= bk. Since r misses bk−1 and Lbk−1

(b0) = · · · = Lbk−1
(bk−1) =

Lbk−1
(d0) = · · · = Lbk−1

(dk−1), it follows that r misses b0, . . . , bk−1, d0, . . . , dk−1.
Since r misses b0, . . . , bk−1, d0, . . . , dk−1 and e1 = g(d1, b0) < a1 = g(b1, d1) < · · · <
ak−2 = g(bk−2, dk−2) < ek−1 = g(dk−1, bk−2) < d1 = f(e0, c) < b1 = f(a0, e0) < d2 =
h(e1, a0) < b2 = h(a1, e1) < · · · < bk−1 = h(ak−2, ek−2) < dk = h(ek−1, ak−2) < r,
it follows that r either sees all of c, a0, . . . , ak−2, e0, . . . , ek−1 or misses all of them.
If r sees them, then dk−1-ek−1dkr-ak−2 is a bull, so r misses them. If r sees one of
ak−1, bk, then Wk ∪ {r} contains a hole of length at least six, a contradiction, so r
misses ak−1, bk.

Case 1. r < bk. Since bk sees ak−1, misses bk−1, and ak−1 < bk−1 < bk, we have
Lbk−1

(ak−1) �= Lbk−1
(bk−1). Apply Lemma 2.2 to define s = f(bk−1, ak−1). Vertex s

sees bk−1, misses ak−1 and bk < s. Since bk−1 sees ak−1, vertex s sees bk by Lemma 2.4.
Since s sees bk−1 and r = f(dk, bk−1) < bk < s, vertex s sees dk. Since s sees bk, dk
and misses ak−1, it follows from Lemma 3.1 that r sees all of b0, . . . , bk, d0, . . . , dk and
misses all of c, a0, . . . , ak−1, e0, . . . , ek−1. If s sees r, then ek−1-dkrs-bk is a bull, so s
misses r.

Since s sees dk, misses r, and dk < r < s, we have Lr(dk) �= Lr(r). Apply
Lemma 2.2 to define t = f(r, dk). Vertex t sees r, misses dk, and s < t. Since r
sees dk, vertex t sees s by Lemma 2.4. Since t misses dk and r = f(dk, bk−1) < s =
f(bk−1, ak−1) < t, vertex t misses ak−1, bk−1. Since t misses bk−1 and Lbk−1

(b0) =
· · · = Lbk−1

(bk−1) = Lbk−1
(d0) = · · · = Lbk−1

(dk−1), it follows that t misses all
of b0, . . . , bk−1, d0, . . . , dk−1. Since t misses ak−1, b0, . . . , bk−1, d0, . . . , dk, and e1 =
g(d1, b0) < a1 = g(b1, d1) < · · · < ek−1 = g(dk−1, bk−2) < ak−1 = g(bk−1, dk−1) <
d1 = f(e0, c) < b1 = f(a0, e0) < d2 = h(e1, a0) < b2 = h(a1, e1) < · · · < dk =
h(ek−1, ak−2) < bk = h(ak−1, ek−1) < t, it follows that t misses all of c, a0, . . . , ak−1, e0,
. . . , ek−1.

Since t sees r, misses bk, and r < bk < t, we can consider the chordless path R =
P(t, bk, r) of Lemma 2.3. Every vertex u of R∗ misses r and satisfies t = f(r, dk) < u,
so u misses dk. The cycle R ∪ Wk has length at least ten, so one of Wk \ {bk} has
a neighbor in R∗. Let u be the vertex of R∗ closest to t that sees one of Wk \ {bk},
then R[u, r] ∪Wk contains a hole of size ≥ 5, a contradiction.

Case 2. bk < r. Since r sees dk, misses bk, and dk < bk < r, we can consider
the chordless path R = P(r, bk, dk) of Lemma 2.3. Every vertex u of R∗ misses dk
and satisfies r = f(dk, bk−1) < u, so u misses bk−1. Then, since Lbk−1

(b0) = · · · =
Lbk−1

(bk−1) = Lbk−1
(d0) = · · · = Lbk−1

(dk−1), vertex u misses all of b0, . . . , bk−1,
d0, . . . , dk−1. Since u misses b0, . . . , bk−1, d0, . . . , dk and e1 = g(d1, b0) < a1 =
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g(b1, d1) < · · · < ek−1 = g(dk−1, bk−2) < ak−1 = g(bk−1, dk−1) < d1 = f(e0, c) <
b1 = f(a0, e0) < d2 = h(e1, a0) < b2 = h(a1, e1) < · · · dk = h(ek−1, ak−2) < bk =
h(ak−1, ek−1) < u, vertex u either sees all of c, a0, . . . , ak−1, e0, . . . , ek−1 or misses all
of them.

Let t be the neighbor of bk in R∗, so t = f(bk, dk). If t sees c, a0, . . . , ak−1,
e0, . . . , ek−1, then bk−1-ak−1bkt-ek−1 is a bull. So t misses c, a0, . . . , ak−1, e0, . . . ,
ek−1. If t sees r, then Wk ∪ {r, t} is a hole, so t misses r.

Let u be the neighbor of r in R∗, so u = f(r, bk). Vertex u misses b0, . . . , bk, d0, . . . ,
dk. If u misses c, a0, . . . , ak−1, e0, . . . , ek−1, then R ∪Wk contains a hole of size ≥ 5,
so u sees c, a0, . . . , ak−1, e0, . . . , ek−1.

Since u sees c, misses b0, and c < b0 < u, we have Lb0(c) �= Lb0(b0). Apply
Lemma 2.2 to define v = f(b0, c). Vertex v sees b0, misses c, and u < v. Since b0 sees
c, vertex v sees u by Lemma 2.4. Since v sees b0 and Lbk−1

(b0) = · · · = Lbk−1
(bk−1) =

Lbk−1
(d0) = · · · = Lbk−1

(dk−1), vertex v misses b0, . . . , bk−1, d0, . . . , dk−1. Since v sees
bk−1, misses c, and d1 = f(e0, c) < r = f(dk, bk−1) < t = f(bk, dk) < u = f(r, bk) < v,
vertex v sees dk, bk, r and misses e0. But then b0-vru-e0 is a bull, a contradiction.
Thus the claim holds.

Claim 8. Ldk
(b0) = · · · = Ldk

(bk−1) = Ldk
(d0) = · · · = Ldk

(dk).

Proof. By Claim 7, Ldk
(bk−1) = Ldk

(dk), and Lbk−1
(b0) = · · · = Lbk−1

(bk−1) =
Lbk−1

(d0) = · · · = Lbk−1
(dk−1), and bk−1 < dk, so Ldk

(b0) = · · · = Ldk
(bk−1) =

Ldk
(d0) = · · · = Ldk

(dk). Thus the claim holds.

Since ak−1 sees bk−1 and misses dk, we have N(bk−1) �= N(dk). Apply Lemma 2.5
to define ek = g(dk, bk−1). Vertex ek sees dk, misses bk−1, ek < bk−1, and Ldk

(ek) <
Ldk

(dk) = Ldk
(d0). Since Ldk

(ek) < Ldk
(d0), so ek < d0 by Lemma 2.1. Since

ek sees dk, so ek /∈ Wk \ {ek−1}. Since ak−1 sees bk−1 and misses dk, we have
L′
dk

(ak−1) ≤ L′
dk

(ek). If ek sees bk, then ek sees the extremities of the chordless
path Wk without seeing bk−1, a contradiction to Lemma 3.1, so ek misses bk. So
L′
dk

(ak−1) < L′
dk

(ek). Apply Lemma 2.5 to define dk+1 = h(ek, ak−1). Vertex dk+1

sees ek, misses ak−1, bk−1, dk, and bk < dk+1.

Claim 9. Wk-ek-dk+1 is a chordless path.

Proof. Since dk+1 misses dk and Ldk
(b0) = · · · = Ldk

(bk−1) = Ldk
(d0) = · · · =

Ldk
(dk), vertex dk+1 misses b0, . . . , bk−1, d0, . . . , dk. Since dk+1 misses ak−1, b0, . . . ,

bk−1, d0, . . . , dk, and e1 = g(d1, b0) < a1 = g(b1, d1) < · · · < ek−1 = g(dk−1, bk−2) <
ak−1 = g(bk−1, dk−1) < d1 = f(e0, c) < b1 = f(a0, e0) < d2 = h(e1, a0) < b2 =
h(a1, e1) < · · · dk = h(ek−1, ak−2) < bk = h(ak−1, ek−1) < t, vertex dk+1 misses
c, a0, . . . , ak−1, e0, . . . , ek−1. Since dk+1 misses ek−1, we have ek �= ek−1. If dk+1 sees
bk, then ek sees the extremities of the chordless path Wk ∪ {dk+1} without seeing
bk−1, a contradiction to Lemma 3.1, so dk+1 misses bk.

Suppose ek sees dk−1. Consider the general step of the algorithm when bk−1 is
chosen. Since Ldk

(ek) < Ldk
(dk) = Ldk

(bk−1), we have Lbk−1
(ek) < Lbk−1

(bk−1),
by Lemma 2.1. Since L′

dk
(ak−1) < L′

dk
(ek), and Ldk

(bk−1) = Ldk
(dk), we have

L′
bk−1

(ak−1) < L′
bk−1

(ek). Set U of step 1 of the algorithm contains ek because

Lbk−1
(ek) < Lbk−1

(bk−1). Since L′
bk−1

(ak−1) < L′
bk−1

(ek), vertex ek is selected from U

at step 2.1 before ak−1. Then at step 2.2, A∩N(ek) must be empty, for otherwise bk−1

is removed from A and bk−1 is not the selected vertex at step 3. Since vertex dk−1 is
in N(ek), it has been removed earlier from A by a vertex u with L′

bk−1
(ek) ≤ L′

bk−1
(u).

Since L′
bk−1

(u) ≥ L′
bk−1

(ek) > L′
bk−1

(ak−1), we have u �= ak−1. This contradicts the
definition of ak−1, so ek misses dk−1.

If ek sees ek−1, then dk−1-ek−1dkek-dk+1 is a bull, so ek misses ek−1. If ek sees
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one of b0, . . . , bk−2, d0, . . . , dk−2, c, a0, . . . , ak−1, e0, . . . , ek−2, then Wk∪{s} contains a
hole of length > 5, so ek missees b0, . . . , bk−2, d0, . . . , dk−2, c, a0, . . . , ak−2, e0, . . . , ek−2.
Thus the claim holds.

Claim 10. ak−1 < ek.
Proof. Suppose the claim is false and ek < ak−1. Since dk+1 sees ek, misses ak−1,

and ek < ak−1 < dk+1, we have Lak−1
(ek) �= Lak−1

(ak−1). Apply Lemma 2.2 to define
u = f(ak−1, ek). Vertex u sees ak−1, misses ek, and dk+1 < u. Since u sees ak−1,
misses ek, dk+1 = h(ek, ak−1) < u, and ek = g(dk, bk−1), vertex u sees dk, bk−1. Since
u sees the extremities of the chordless path Wk \ {bk}, by Lemma 3.1 it must see all
the vertices of Wk \ {bk}. But then ak−1-uek−1dk-ek is a bull, a contradiction. Thus
the claim holds.

Claims 8, 9, and 10, and the definition of ek, dk+1, show that the sequences (ai)i<k,
(bi)i≤k, (di)i≤k+1, (ei)i<k+1 are well defined and satisfy the following properties:

• c < e0 < a0 < · · · < ek−1 < ak−1 < ek < d0 < b0 < · · · < dk < bk < dk+1.
• Ldk

(b0) = · · · = Ldk
(bk−1) = Ldk

(d0) = · · · = Ldk
(dk).

• Wk-ek-dk+1 is a chordless path.
The same type of proof can be done (and we omit the details) to define vertices
ak = g(bk, dk) and bk+1 = h(ak, ek) and to show that they satisfy the following
properties:

• c < e0 < a0 < · · · < ek < ak < d0 < b0 < · · · < dk+1 < bk+1.
• Lbk(b0) = · · · = Lbk(bk) = Lbk(d0) = · · · = Lbk(dk).
• bk+1-ak-Wk-ek-dk+1 is a chordless path.

This means that a-b-c-d-e admits an extension of order k + 1. This is a contradiction
to the definition of k. This completes the proof of the theorem.

4. Algorithm COSINE*. Algorithm Cosine* is a particular case of Algorithm
Cosine due to Hertz [20], which is an O(nm) algorithm for optimally coloring the
vertices of a Meyniel graph. The difference between Cosine and Cosine* is that
the input graph of Cosine* has an ordering σ on its vertices and ties are broken
according to this ordering.

Colors are viewed as integers 1, 2, . . . , �. Algorithm Cosine* constructs the color
classes iteratively. To construct the class of color c, the algorithm selects vertices until
all the vertices of the graph have a neighbor colored c. At each step, the vertex that
is selected and colored c is the vertex that has no neighbor already colored c and has
the maximum number of uncolored neighbors in common with the vertices already
colored c, with ties being broken by taking such a vertex that minimizes σ. More
formally:

Algorithm Cosine*

Input: A graph G on n vertices and an ordering σ on its vertices.
Output: A coloring of the vertices of G.
Initialization: c = 1;
General step: While there exist uncolored vertices do:
1. While there exist uncolored vertices that have no neighbor colored
c do:

1.1. Let A be the set of uncolored vertices that have a neighbor
colored c;

1.2. Select an uncolored vertex u that has no neighbor colored
c and has the maximum number of neighbors in A, with ties being
broken by taking such a vertex that is minimum for σ;

1.3. Color u with c;
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2. c := c + 1.
One may remark that the original formulation of Algorithm Cosine in [20] is

different. Hertz explains his algorithm in terms of vertex contraction. We prefer to
modify the formulation of the algorithm to simplify the algorithmic concepts. To
prove the optimality of the algorithm, we need to introduce the notion of contraction,
which is done in the next section.

Complexity analysis. To analyze the complexity of algorithm Cosine*, we will
assume that the input graph is connected; thus if n is the number of vertices and m
the number of edges of the graph, we have m ≥ n− 1. If the graph is not connected,
then it suffices to apply the algorithm on each of its components. Breaking the ties
in Cosine* does not increase the complexity of Algorithm Cosine, that is, it can be
implemented in time O(nm) as follows. Updating the set A at step 1.1 can be done in
time O(d(u)) whenever a new vertex u is colored at step 1.3, by adding the uncolored
neighbors of u to A. For one given color c, this procedure takes time O(n + m), so
the total cost is O(nm) over all colors. To compute step 1.2 efficiently, we use for
each vertex a counter that represents the number of its neighbors in A. Every time
a vertex is added to A we update the counter of the other vertices; this can also
be done in time O(n + m) for a given color and so in time O(nm) over all colors.
Then we search all the vertices in time O(n) to find the uncolored vertex that has
the maximum counter and is minimum for σ. After each such search, one vertex is
colored, so the total cost of all such searches is O(n2). Therefore, the total running
time of Algorithm Cosine* is O(nm).

5. Even pairs contraction. An even pair in a graph G is a pair of nonadjacent
vertices such that every chordless path between them has even length. A survey on
even pairs is given in [12]. Given two nonadjacent vertices x, y in G, the operation
of contracting them means removing x and y and adding one vertex with an edge to
each vertex of N(x) ∪N(y). The following lemmas state essential results about even
pairs.

Lemma 5.1 (see [13, 29]). For any graph G, the graph G′ obtained from G by
contracting an even pair of G satisfies ω(G′) = ω(G) and χ(G′) = χ(G).

Lemma 5.2 (see [12]). If a graph G contains no odd hole, then the graph G′

obtained from G by contracting an even pair contains no odd hole.
Lemma 5.3 (see [12]). If a graph G contains no antihole, then the graph G′

obtained from G by contracting an even pair contains no antihole different from C6.
Following Bertschi [4], a graph G is called even contractile if it is either a clique

or it contains an even pair whose contraction yields an even contractile graph, and G
is perfectly contractile if every induced subgraph of G is even contractile. See [12] for
a survey on perfectly contractile graphs.

We need to define a superclass of B. Let us say that a graph G is a quasi-B
graph if G is a Berge graph that contains no antihole of length at least five and G
has a vertex, called a pivot, that is an ear of every bull of G. (This definition can be
compared with the definition of quasi-Meyniel graphs in [20].) We observe that every
graph in class B is a quasi-B graph (and in such a graph, every vertex is a pivot), and
if G is a quasi-B graph and z is a pivot, then G \ z is in class B.

We prove that, for every graph G in class B, Algorithm LexBFS* applied on G
followed by Algorithm Cosine* applied on G produces a coloring of the vertices of G
with ω(G) colors, where ω(G) is the maximum size of a clique in G. This will prove
the optimality of this algorithm on the class B. Our proof follows the same steps as
Hertz’s proof [20] that his algorithm Cosine is optimal on quasi-Meyniel graphs. Just
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like in [20], the optimality of our algorithm will follow from the fact that each color
class produced by the algorithm corresponds to the contraction of even pairs.

The following lemma generalizes Lemma 3.1 to quasi-B graphs.

Lemma 5.4. In a quasi-B graph G, let P = a0-a1-· · ·-ar be a chordless odd path
with r ≥ 5, where a0 is a pivot of G, and let u be a vertex that sees the two endvertices
a0, ar of P . Then u sees a2.

Proof. Suppose the lemma is false and u misses a2. If u sees a1, then ar-ua0a1-
a2 is a bull of which a0 is not an ear, a contradiction. So u misses a1. Denote a
segment as any subpath of P , of length at least one, whose endvertices see u and
interior vertices do not. So P is (edgewise) partitioned into its segments. Since G is
odd-hole-free, every segment has length one or even length. Since P is odd, there is a
least one segment of length one. Let i be the smallest integer such that u sees ai and
ai+1. Since u misses a1, a2, we have i ≥ 3. Then ai−1-aiai+1u-a0 is a bull of which
a0 is not an ear, a contradiction.

Now we prove the following theorem, which implies the optimality of our coloring
algorithm.

Theorem 5.5. Let G be in class B. Then the coloring obtained by Algorithm
LexBFS* applied on G followed by Algorithm Cosine* applied on G uses exactly
ω(G) colors.

Proof of Theorem 5.5. Let � be the total number of colors used by the algorithm.
For each color c ∈ {1, . . . , �} let kc be the number of vertices colored c. Therefore
every vertex of G can be renamed xi

c, where c ∈ {1, . . . , �} is the color assigned to
the vertex by the algorithm and i ∈ {1, . . . , kc} is the integer such that xi

c is the ith
vertex colored c. Thus V (G) = {x1

1, x
2
1, . . . , x

k1
1 , x1

2, . . . , x
k2
2 , . . . , x1

� , . . . , x
k�

� }.
Define a sequence of graphs and vertices as follows. Put G1

1 = G and w1
1 = x1

1

(that is a pivot of G). For i = 2, . . . , k1, call Gi
1 the graph obtained from Gi−1

1 by
contracting wi−1

1 and xi
1 into a new vertex wi

1 colored with the color one. In the graph
Gk1

1 , we remark that wk1
1 is adjacent to all other vertices of Gk1

1 ; for otherwise, there is
a vertex y that is not adjacent to wk1

1 , that means that y has no neighbor of color one,
so the algorithm should have colored more vertices with color one; a contradiction.
More simply, let us call w1 the vertex wk1

1 .

The sequence continues as follows. For each c ∈ {2, . . . , �}, put G1
c = G

kc−1

c−1 and
w1

c = x1
c . For i = 2, . . . , kc, call Gi

c the graph obtained from Gi−1
c by contracting

vertices wi−1
c and xi

c into a new vertex wi
c colored with the color c. In Gkc

c , we can
again remark that wkc

c is adjacent to all other vertices of Gkc
c , for the same reason

as above, and we simply call wc the vertex wkc
c . So the last graph in the sequence,

Gk�

� , is a clique of size l with vertices w1, . . . , w�, where each wc is obtained by the
contraction of the vertices of color c.

Claim 1. For every color c ∈ {1, . . . , �} and integer i ∈ {1, . . . , kc − 1}, if Gi
c

is a quasi-B graph, wi
c is a pivot, and not the top of a house of Gi

c, then there is no
chordless odd path from wi

c to xi+1
c in Gi

c.

Proof. Suppose on the contrary that there exists a chordless odd path P = a0-
a1-· · ·-ar−1-ar from a0 = wi

c to ar = xi+1
c in Gi

c. We have r ≥ 3 since wi
c, x

i+1
c are

not adjacent. Note that every vertex of P has a nonneighbor in Gi
c. Put W1 = ∅

and Wc = {w1, . . . , wc−1} if c ≥ 2, and recall that any w ∈ Wc is a vertex of Gi
c that

is adjacent to all vertices of Gi
c \ w. So P contains no vertex of Wc. We know that

every vertex of Gi
c \ Wc will have a color from {c, c + 1, . . . , �} when the algorithm

terminates.

Let us consider the situation when Algorithm Cosine* selects xi+1
c . Let A be
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the set defined at step 1.1 of the algorithm. Vertex a1 is in A and a2 is not in A. Let
T = N(xi+1

c ) ∩A. Every vertex of T is adjacent to at least one vertex colored c in G
and thus is adjacent to wi

c in Gi
c.

Suppose that there exists a vertex t ∈ T that misses a2. If r = 3, then either t
misses a1 and then u, a0, a1, a2, a3 induce an odd hole, or t sees a1 and then a0 is the
top of a house, in either case a contradiction. So r ≥ 5. Vertex t sees both extremities
of the chordless odd path P without seeing a2, a contradiction to Lemma 5.4. So
every vertex of T sees a2. Then T ∪ {a1} ⊂ N(a2) ∩ A, and so a2 has strictly more
neighbors in A than xi+1

c , which contradicts the fact that xi+1
c is selected at step 1.2.

Thus the claims holds.

Claim 2. For every color c ∈ {1, . . . , �} and integer i ∈ {0, 1, . . . , kc − 1}, the
following two properties hold:

(Ai) If i ≥ 1, then wi
c and xi+1

c form an even pair of Gi
c.

(Bi) 1. Gi+1
c is a quasi-B graph.

2. wi+1
c is a pivot of Gi+1

c .
3. wi+1

c is not the top of a house of Gi+1
c .

Proof. Let c ∈ {1, . . . , �}. We show by induction on i that (Ai) and (Bi) hold.

Property (A0) holds by vacuity. Graph G1
1 is in B, so w1

c is a pivot of this graph,
and so (1) and (2) are satisfied when c = 1 and i = 0. To prove item 3, consider
the beginning of Algorithm Cosine*: The set A of step 1.1 is empty, so w1

1 is the
minimum vertex of σ. Since the ordering σ was obtained by Algorithm LexBFS*

applied on G, Theorem 3.2 ensures that w1
1 is not the middle of a P5 in G1

1, so w1
1 is

not the top of a house in G1
1.

Suppose c ≥ 2. In the graph G1
c , every vertex wh with h ∈ {1, . . . , c − 1} is

adjacent to all other vertices of the graph; moreover, G1
c \ {w1, . . . , wc−1} is in B,

since it is a subgraph of G. It follows that G1
c is actually in B, and so w1

c is a pivot
of this graph. At this step of Algorithm Cosine* the set A of step 1.1 is empty, so
at step 1.2 every vertex of G1

c \ {w1, . . . , wc−1} has no neighbor colored c and has the
maximum number of neighbors in A, so the vertex w1

c = x1
c that is selected is the

minimum for σ in G1
c \{w1, . . . , wc−1}, and Theorem 3.2 ensures that this vertex is not

the top of a house in G1
c\{w1, . . . , wc−1}. Since every vertex wh with h ∈ {1, . . . , c−1}

is adjacent to all other vertices of the graph, it follows that w1
c is not the top of a

house in G1
c .

Now suppose that i ≥ 1 and that (Ai−1) and (Bi−1) hold. Claim 1 implies imme-
diately that (Ai) holds. It remains to prove (Bi). By (Ai), (Bi−1), and Lemmas 5.2
and 5.3, the graph Gi+1

c contains no odd hole and no antihole different from C6.

Suppose that Gi+1
c contains a C6, with vertices a1, a2, a3, a4, a5, a6 and nonedges

a1a2, a2a3, a3a4, a4a5, a5a6, a6a1. If wi+1
c is not one of the ai’s, then this C6 is also

contained in Gi
c, a contradiction. So, by symmetry, we may assume that wi+1

c = a1.
By the definition of contraction, both wi

c, x
i+1
c miss a6 and a2, and each of a3, a4, a5

sees at least one of wi
c, x

i+1
c . At least one of wi

c, x
i+1
c sees both a3, a5, for otherwise

either wi
c-a3-a5-x

i+1
c or wi

c-a5-a3-x
i+1
c is a chordless path between wi

c and xi+1
c , a

contradiction to (Ai). Call u a vertex of wi
c, x

i+1
c that sees both a3, a5, and call v the

other one. None of u, v sees all of a3, a4, a5, for otherwise a C6 is contained in Gi
c. So

u misses a4, and so v sees a4 and misses at least one of a3, a5. By symmetry we can
assume that v misses a3. But then v-a4a2a6-a3 is a bull of Gi

c of which wi
c is not an

ear, a contradiction. So Gi+1
c contains no C6.

Suppose that Gi+1
c contains a bull a1-a2a3a4-a5 such that wi+1

c is not an ear of
this bull. If wi+1

c is not in the bull, then the bull is also contained in Gi
c and wi

c is not
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in it, which contradicts the fact that wi
c is a pivot of Gi

c. So, by symmetry, we may
assume that wi+1

c = a1 or wi+1
c = a3. If wi+1

c = a1, then wi
c, x

i+1
c miss all of a3, a4, a5,

and at least one of wi
c, x

i+1
c sees a2; but this yields a bull in Gi

c of which wi
c is not an

ear, a contradiction. If wi+1
c = a3, then both wi

c, x
i+1
c miss both a1, a5, and at least

one of wi
c, x

i+1
c sees both a2, a4, for otherwise either wi

c-a2-a4-x
i+1
c or wi

c-a4-a2-x
i+1
c

is a chordless path between wi
c and xi+1

c , a contradiction to (Ai). But this yields a
bull in Gi

c of which wi
c is not an ear, a contradiction.

It follows from the preceding two paragraphs that Gi+1
c is a quasi-B graph and

that wi+1
c is a pivot of Gi+1

c .
Now suppose that wi+1

c is the top of a house in Gi+1
c with vertices a1, a2, a3, a4,

a5 and nonedges a1a2, a2a3, a3a4, a4a5. So wi+1
c = a3. In Gi

c, both wi
c, x

i+1
c miss

a2, a4. Vertex wi
c misses at least one of a1, a5, for otherwise it is the top of a house in

Gi
c, a contradiction to (Bi−1). By symmetry, we may assume that wi

c misses a5, and
so xi+1

c sees a5. Then xi+1
c also sees a1, for otherwise wi

c-a1-a5-x
i+1
c is a path that

contradicts (Ai). Then wi
c misses a1, for otherwise wi

c-a1x
i+1
c a5-a2 is a bull in Gi

c of
which wi

c is not an ear. Note that, in Gi
c, vertices a1, a2, x

i+1
c , a4, a5 induce a house,

of which xi+1
c is the top, and wi

c misses all of them. Let us consider the situation
when Algorithm Cosine* selects xi+1

c . Let A be the set defined at step 1.1 of the
algorithm. Since wi

c misses all of the ai’s, none of them is in A. Let T = N(xi+1
c )∩A,

and consider any vertex t of T . By the definition of T , vertex t sees xi+1
c and wi

c

in Gi
c. If t misses both a1, a5, then t sees a4, for otherwise t-xi+1

c a5a1-a4 is a bull
in Gi

c of which wi
c is not an ear, and similarly t sees a2, but then wi

c-ta4a2-a5 is a
bull in Gi

c of which wi
c is not an ear. So t sees at least one of a1, a5, say a1. Then t

sees a4, for otherwise wi
c-tx

i+1
c a1-a4 is a bull in Gi

c of which wi
c is not an ear. Then

t sees a2, for otherwise wi
c-ta1a4-a2 is a bull in Gi

c of which wi
c is not an ear. Then

t sees a5, for otherwise wi
c-ta4a2-a5 is a bull in Gi

c of which wi
c is not an ear. So

every vertex of T sees a1, a2, a4, a5. Now a1, a2, a4, a5 are all uncolored vertices that
have no neighbor colored c and have at least as many neighbors in A as xi+1

c , so they
have the maximum number of neighbors in A, and according to the ordering σ we
have xi+1

c < min{a1, a2, a4, a5}. By Theorem 3.2, xi+1
c is not the top of a house, a

contradiction. Thus the claim holds.
Claim 2 implies that in the sequence G = G1

1, . . . , G
k�

� , each graph other than the
first one is obtained from its predecessor by contracting an even pair of the predecessor.
Then Lemma 5.1 applied successively along the sequence implies that ω(G) = ω(Gk�

� )

and χ(G) = χ(Gk�

� ); but χ(Gk�

� ) = ω(Gk�

� ) = � since Gk�

� is a clique of size �; so the
algorithm does color the input graph optimally with ω(G) colors. This completes the
proof of the theorem.

Coloring a graph in B takes time O(nm) since algorithm LexBFS* applied on G
has complexity O(nm) and Algorithm Cosine* too.

6. Finding a maximum clique. We can extend the preceding algorithms by
another greedy algorithm, which, in the case of a graph in class B, will produce in
linear time a clique of maximum size. Let G be any graph given with a coloring of its
vertices using � colors. Then we can apply the following algorithm to build a set Q:

Algorithm Clique

Input: A graph G and a coloring of its vertices using � colors.
Output: A set Q that consists of � vertices of G.
Initialization: Set Q := ∅, c := �, and for every vertex x set q(x) := 0;
General step: While c �= 0 do:
Pick a vertex x of color c that maximizes q(x), do Q := Q ∪ {x}, for
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every neighbor y of x do q(y) := q(y) + 1, and do c := c− 1.
Algorithm Clique can be implemented in time O(m + n). To do this, at the step
where the vertices of color c are examined, keep one vertex of color c that maximizes
the counter q, and update the counter of the neighbors of that vertex.

We claim that when the input consists of a graph G in class B, with the coloring
produced by Algorithm LexBFS* followed by Algorithm Cosine*, the output Q of
Algorithm Clique is a clique of size �. Actually this will be true in a more general
framework.

Lemma 6.1. Let G be a graph given with a coloring of its vertices using � col-
ors. Call its vertices x1

1, x
2
1, . . . , x

k1
1 , x1

2, . . . , x
k2
2 , . . . , x1

� , . . . , x
k�

� , so that vertices of
subscript c have color c. Define the corresponding sequence of graphs Gi

c and vertices
wi

c (1 ≤ c ≤ �, 1 ≤ i ≤ kc) obtained by successive contractions as in the preceding
section. Suppose that for each color c = 1, . . . , �− 1, we have the following:

(i) Every vertex of color strictly greater than c has a neighbor of color c.
(ii) For each i = 1, . . . , kc − 1, the graph Gi

c contains no chordless path on four
vertices whose endvertices are wi

c and xi+1
c .

Let Q be a clique whose vertices have colors strictly greater than c for some c ∈
{1, . . . , �− 1}. Then there is a vertex of color c that is adjacent to all of Q.

Proof. For i = 1, . . . , kc, consider the following Property Pi: “In the graph Gi
c,

vertex wi
c is adjacent to all of Q.” Note that Property Pkc holds by (i) and by the

definition of wkc
c . We may assume that Property P1 does not hold, for otherwise the

lemma holds with vertex x1
c = w1

c . So there is an integer i ∈ {2, . . . , kc} such that Pi

holds and Pi−1 does not. Then, in the graph Gi−1
c , vertex xi

c must be adjacent to all
of Q, for otherwise Q contains vertices a, b such that a is adjacent to wi−1

c and not to
xi
c and b is adjacent to xi

c and not to wi−1
c , and then the path wi−1

c -a-b-xi
c contradicts

(ii). So the lemma holds with vertex xi
c.

Lemma 6.2. Let G be a graph in class B, and let x1
1, x

2
1, . . . , x

k1
1 , x1

2, . . . , x
k2
2 , . . . ,

x1
� , . . . , x

k�

� be a coloring produced by Algorithm LexBFS* applied on G followed by
Algorithm Cosine* applied on G. Then, when Algorithm Clique is run on this input
it produces a clique of size ω(G).

Proof. Consider the set Q maintained during Algorithm Clique. We claim that,
for each c = �, �−1, . . . , 1, at the end of step c the set Q is a clique of size �−c+1 that
contains one vertex of each color c, . . . , �. This is clear when c = �. At the general
step, Lemma 6.1 ensures that there exists a vertex of color c − 1 that is adjacent to
all of Q. So Algorithm Clique will select such a vertex, add it to Q, and so the claim
remains true at the end of that step. Thus the algorithm ends with a clique Q of size
�. Since G admits a coloring of size �, we have � = χ(G) = ω(G).

7. Comments. We observe that the hypothesis of Lemma 6.2 actually yields
some slightly stronger properties:

(a) For any color c, every vertex of color c lies in a clique of size c; and more
generally, every clique whose smallest color is c is included in a clique that contains a
vertex of each color 1, . . . , c. This is a consequence of Lemma 6.1 that can be derived
just like Lemma 6.2. A coloring that has this property is called strongly canonical
in [22].

(b) The set of vertices of color 1 is a stable set that intersects all maximal cliques
of G. This too can be derived easily from Lemma 6.1. Such a set is called a strong
stable set in [23]. Thus every graph G in class B is strongly perfect (i.e., every induced
subgraph of G has a strong stable set), which was also a corollary of Hayward’s result
[18]. Moreover, using for graphs in B the idea from Hoàng [24, Theorem 2.1], this
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implies that one can find a minimum weighted coloring and a maximum weighted
clique for a graph in B in time O(n2m).

The coloring algorithm is “robust” [30] in the sense that the input graph can be
any graph G, and if G is not in B and the output coloring is not optimal, it can detect
this fault. To do this we apply Algorithm LexBFS* on G followed by Algorithm
Cosine* and Algorithm Clique on G, and we need only check whether Q is a clique
(which can be done in linear time). If Q is a clique, then the coloring is optimal since
it uses � colors and Q has size �. If Q is not a clique, then we know that the input
graph is not in B.

Since every graph in B admits a perfect ordering, as proved in [18], one may
wonder whether the ordering in which the vertices are colored by Algorithm LexBFS*

applied on G followed by Algorithm Cosine* applied on G gives such a perfect order.
But here is a counterexample. Let G be the graph on six vertices a, b, c, d, e, f , where
a-b-c-d-e is a path on five vertices and f is adjacent to a, c, d, e. Then Algorithm
LexBFS* applied on G can produce the ordering f < b < c < e < d < a and
Algorithm Cosine* can color the vertices in the ordering f < b < c < e < a < d. This
is not a perfect ordering for G since the four vertices b, c, d, e form an “obstruction” [6]
since b < c and e < d.
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